首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider a central limit theorem for the sequence of stationary m-dependent random variables, the variance of which is possibly infinite. Theorem. Let {Xn, n=l, 2,...} be a sequence of stationary m-dependent random variables with means zero. The following conditions are satisfied. (i) \[{M^2}\int_{{\text{|}}{X_1}| > M} {dP} /\int_{{X_1}| < M} {X_1^2} dP \to 0{\kern 1pt} {\kern 1pt} {\kern 1pt} (M \to \infty )\] (ii) \[\int_{\{ {X_1}| < M,|{X_i}| < M} {X_1^{}} {X_i}dP/\int_{|{X_1}| < M} {X_1^2} dP \to 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (M \to \infty )\] then there are constants Bsubsub>0, such that \[\frac{1}{{{B_n}}}\sum\limits_{i = 1}^n {{X_1}} \] converges in distribution N(0,1).  相似文献   

2.
3.
Let X_1,…,X_n be iid samples drawn from an m-dimensional population with a probabilitydensity f,belonging to the family C_(ka),i.e.the family of all densities whose partialderivatives of order k are bounded by a.It is desired to estimate the value of f at somepredetermined point a,for example a=0.Farrell obtained some results concerning the bestpossible convergence rates for all estimator sequence,from which it follows,for example,thatthere exists no estimator sequence{γ_n(0)=γ_n(X_1,…,X_n,0)}such that(?)E_f[γ_n(0)-f(0)]~2=o(n~(-2k/(2k m))).This article pursues this problem further and proves that there existsno estimator sequence{γ_n(0)}such thatn~(-k/(2k m))(γ_n(0)-f(0))(?)0,for each f∈C_(ka),where(?)denotes convergence in probability.  相似文献   

4.
In this paper we consider the systems governed, by parabolioc equations \[\frac{{\partial y}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}} ({a_{ij}}(x,t)\frac{{\partial y}}{{\partial {x_j}}}) - ay + f(x,t)\] subject to the boundary control \[\frac{{\partial y}}{{\partial {\nu _A}}}{|_\sum } = u(x,t)\] with the initial condition \[y(x,0) = {y_0}(x)\] We suppose that U is a compact set but may not be convex in \[{H^{ - \frac{1}{2}}}(\Gamma )\], Given \[{y_1}( \cdot ) \in {L^2}(\Omega )\] and d>0, the time optimal control problem requiers to find the control \[u( \cdot ,t) \in U\] for steering the initial state {y_0}( \cdot )\] the final state \[\left\| {{y_1}( \cdot ) - y( \cdot ,t)} \right\| \le d\] in a minimum, time. The following maximum principle is proved: Theorem. If \[{u^*}(x,t)\] is the optimal control and \[{t^*}\] the optimal time, then there is a solution to the equation \[\left\{ {\begin{array}{*{20}{c}} { - \frac{{\partial p}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}({a_{ji}}(x,t)\frac{{\partial p}}{{\partial {x_j}}}) - \alpha p,} }\{\frac{{\partial p}}{{\partial {\nu _{{A^'}}}}}{|_\sum } = 0} \end{array}} \right.\] with the final condition \[p(x,{t^*}) = {y^*}(x,{t^*}) - {y_1}(x)\], such that \[\int_\Gamma {p(x,t){u^*}} (x,t)d\Gamma = \mathop {\max }\limits_{u( \cdot ) \in U} \int_\Gamma {p(x,t)u(x)d\Gamma } \]  相似文献   

5.
AIn this paper, the author obtains the following results:(1) If Taylor coeffiients of a function satisfy the conditions:(i),(ii),(iii)A_k=O(1/k) the for any h>0 the function φ(z)=exp{w(z)} satisfies the asymptotic equality the case h>1/2 was proved by Milin.(2) If f(z)=z α_2z~2 …∈S~* and,then for λ>1/2  相似文献   

6.
Let L(x) denote the number of square-full integers not exceeding x. It is proved in [1] thatL(x)~(ζ(3/2)/ζ(3))x~(1/2) (ζ(2/3)/ζ(2))x~(1/3) as x→∞,where ζ(s) denotes the Riemann zeta function. Let △(x) denote the error function in the asymptotic formula for L(x). It was shown by D. Suryanaryana~([2]) on the Riemann hypothesis (RH) that1/x integral from n=1 to x |△(t)|dt=O(x~(1/10 s))for every ε>0. In this paper the author proves the following asymptotic formula for the mean-value of △(x) under the assumption of R. H.integral from n=1 to T (△~2(t/t~(6/5))) dt~c log T,where c>0 is a constant.  相似文献   

7.
By using the exponential dichotomy and the averaging method,a perturbation theoryis established for the almost periodic solutions of an almost differential system.Suppose that the almost periodic differential system(dx)/(dt)=f(x,t) ε~2g(x,t,ε)(1)has an almost periodic solution x=x_0(t,M)for ε=0,where M=(m_1,…,m_k)is theparameter vector.The author discusses the conditions under which(1)has an almostperiodic solution x=x(t,ε)such that x(t,ε)=x_0(t,M)holds uniformly.The results obtained are quite complete.  相似文献   

8.
In this article we generahze the polynomials of Kantorovitch \({P_n}(f)\) . Let \({B_n}\) be a sequence of linear operators from C[a,b] into \({H_n}\), if \[f(t) \in L[a,b],F(u) = \int_a^u {f(t)dt} ,{A_n}(f(t),x) = \frac{d}{{dx}}{B_{n + 1}}(F(u),x)\], here \({B_n}\)satisfy\[\begin{array}{l} (a):{B_n}(1,x) \equiv 1,{B_n}(u,x) \equiv x;\(b):for{\kern 1pt} {\kern 1pt} g(u) \in C[a,b]{\kern 1pt} {\kern 1pt} we{\kern 1pt} {\kern 1pt} have{\kern 1pt} {\kern 1pt} {B_n}(g(u),b) = g(b). \end{array}\]. we call such \({A_n}(f)\) generalized polynomials of Kantorovitch (denoted by \({A_n}(f) \in K\) ). Let \[\begin{array}{l} {\varepsilon _n}({W^2};x)\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}} \left| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right|,\{\varepsilon _n}{({W^2}{L^p})_{{L^p}}}\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}{L^p}} {\left\| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right\|_p}. \end{array}\] We have proved the following results: Let An he a sequence of linear continuous operators of type \[C[a,b] \Rightarrow C[a,b],{D_n}(x,z)\mathop = \limits^{def} {A_n}(\left| {t - z} \right|,x) - \left| {x - z} \right| - ({A_n}(t,x) - x)Sgn(x - z),{A_n}(1,x) = 1\] then (1):\({\varepsilon _n}({W^2};x) = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dz\), (2): Moreover, if \({A_n}\) be a sequence of linear positive operators, then for \(\left[ {\begin{array}{*{20}{c}} {a \le x \le b}\{a \le z \le b} \end{array}} \right]\) ,we have \({D_n}(x,z) \ge 0\), and \({\varepsilon _n}({W^2};x) = \frac{1}{2}{A_n}({(t - x)^2},x)\). Let \({A_n}(f) \in K\) be a sequence of linear positive operators,\[{R_n}{(z)_L} = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dx\],then \[{R_n}{(z)_L} = \frac{1}{2}\left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right]\] and \[{\varepsilon _n}{({W^2}L)_L}{\rm{ = }}\frac{1}{2}\left\| {{B_{n + 1}}({u^2},z) - {z^2}} \right\|\]. Let \[{g_n} = \frac{1}{2}\mathop {\max }\limits_{a \le x \le b} {A_n}({(t - x)^2},x),{h_n} = \frac{1}{2}\mathop {\max }\limits_{a \le z \le b} \left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right],\] then \[{\varepsilon _n}{({W^2}{L^p})_{{L^p}}} \le {g_n}^{1 - \frac{1}{p}}{h_n}^{\frac{1}{p}}(1 < p < \infty ).\]  相似文献   

9.
Let \[f(z) = z + \sum\limits_{n = 1}^\infty {{a_n}{z^n} \in S} {\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \log \frac{{f(z) - f(\xi )}}{{z - \xi }} - \frac{{z\xi }}{{f(z)f(\xi )}} = \sum\limits_{m,n = 1}^\infty {{d_{m,n}}{z^m}{\xi ^n},} \], we denote \[{f_v} = f({z_v})\] , \[\begin{array}{l} {\varphi _\varepsilon }({z_u}{z_v}) = {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\frac{1}{{(1 - {z_u}{{\bar z}_v})}},\g_m^\varepsilon (z) = - {F_m}(\frac{1}{{f(z)}}) + \frac{1}{{{z^m}}} + \varepsilon {{\bar z}^m}, \end{array}\], where \({F_m}(t)\) is a Faber polynomial of degree m. Theorem 1. If \[f(z) \in S{\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{u,v = 1}^N {{A_{u,v}}{x_u}{{\bar x}_v} \ge 0} \] and then \[\begin{array}{l} \sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\exp \{ \alpha {F_l}({z_u},{z_v})\} \ \le \sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} \varphi _\varepsilon ^\alpha ({z_u}{z_v})l = 1,2,3, \end{array}\], where \[\begin{array}{l} {F_1}({z_u},{z_v}) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} g_n^\varepsilon ({z_u})\bar g_n^\varepsilon ({z_v}),\{F_2}({z_u},{z_v}) = \frac{1}{{1 + {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}),\{F_3}({z_u},{z_v}) = \frac{1}{{1 - {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}). \end{array}\] The \[F({z_u},{z_v}) = \frac{1}{2}{g_1}({z_u}){{\bar g}_2}({z_v})\] is due to Kungsun. Theorem 2. If \(f(z) \in S\) ,then \[P(z) + \left| {\sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {{\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}\frac{{{z_u}{z_v}}}{{{f_u}{f_v}}}} \right|}^\varepsilon }} \right| \le \sum\limits_{u,v = 1}^N {{\lambda _u}{{\bar \lambda }_v}} \frac{1}{{1 - {z_u}{{\bar z}_v}}}\], where \[\begin{array}{l} P(z) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} {G_n}(z),\{G_n}(z) = {\left| {\left| {\sum\limits_{n = 1}^N {{\beta _u}({F_n}(\frac{1}{{f({z_u})}}) - \frac{1}{{z_u^n}})} } \right| - \left| {\sum\limits_{n = 1}^N {{\beta _u}z_u^n} } \right|} \right|^2}, \end{array}\], \(P(z) \equiv 0\) is due to Xia Daoxing.  相似文献   

10.
Based on [3] and [4],the authors study strong convergence rate of the k_n-NNdensity estimate f_n(x)of the population density f(x),proposed in [1].f(x)>0 and fsatisfies λ-condition at x(0<λ≤2),then for properly chosen k_nlim sup(n/(logn)~(λ/(1 2λ))丨_n(x)-f(x)丨C a.s.If f satisfies λ-condition,then for propeoly chosen k_nlim sup(n/(logn)~(λ/(1 3λ)丨_n(x)-f(x)丨C a.s.,where C is a constant.An order to which the convergence rate of 丨_n(x)-f(x)丨andsup 丨_n(x)-f(x)丨 cannot reach is also proposed.  相似文献   

11.
In this paper the author proves a new fundamental lemma of Hardy-Lebesgne class $\[{H^2}(\sigma )\]$ and by this lemma obtains some fundamental results of exponential stability of $\[{C_0}\]$-semigroup of bounded linear operators in Banach spaces. Specially, if $\[{\omega _s} = \sup \{ {\mathop{\rm Re}\nolimits} \lambda ;\lambda \in \sigma (A) < 0\} \]$ and $\[\sup \{ \left\| {{{(\lambda - A)}^{ - 1}}} \right\|;{\mathop{\rm Re}\nolimits} \lambda \ge \sigma \} < \infty \]$ , where \[\sigma \in ({\omega _s},0)\]) and A is the infinitesimal generator of a $\[{C_0}\]$-semigroup in a Banach space $X$, then $\[(a)\int_0^\infty {{e^{ - \sigma t}}\left| {f({e^{tA}}x)} \right|} dt < \infty \]$, $\[\forall f \in {X^*},x \in X\]$; (b) there exists $\[M > 0\]$ such that $\[\left\| {{e^{tA}}x} \right\| \le N{e^{\sigma t}}\left\| {Ax} \right\|\]$, $\[\forall x \in D(A)\]$; (c) there exists a Banach space $\[\hat X \supset X\]$ such that $\[\left\| {{e^{tA}}x} \right\|\hat x \le {e^{\sigma t}}\left\| x \right\|\hat x,\forall x \in X.\]$.  相似文献   

12.
suppose that p is a Markov transition matrix on the sapce E,and {ui}(\[i \in E\])is an initial distribution.The Matrix (ui,pij)is called a probility-flow.we obtain the following theorem:For any initial distribution {ui}(ui>0)which need not be stationary,we have \[{u_i}{p_{ij}} = {u_i}{p_{ij}}^d + \sum\limits_{k \in K} {{r_{ij}}^{(k)}} + \sum\limits_{i \in L} {{g_{ij}}^{(l)}} \] where, 1) \[{u_i}{p_{ij}}^d = {u_i}{p_{ij}}^d(i,j \in E)\] \[{p_{ij}}^d\]is called the detailed balabce part of p; 2)For each \[k \in K\](at most denumerable),there is a circular road \[{a^{(k)}} = (i_1^{(k)},i_2^{(k)},...,i_n^{(k)},i_1^{(k)})\](\[n \geqslant 3,{i_s} \ne {i_t}(S \ne t,1 \leqslant S,t \leqslant n\]),and there is a constant \[{c_k} > 0\],such that \[{r_{ij}}^{(k)} = \left\{ {\begin{array}{*{20}{c}} {{c_k},(i,j) \in {a^{(k)}}} \\ {0,(else)} \end{array}} \right.\] and \[\sum\limits_{k \in K} {{r_{ij}}^{(k)}} \] is called the circulation part of p; 3)For any \[l \in L\](at most denumerable),there is a read in E; \[{r^{(l)}} = (j_1^{(1)},...,j_n^{(l)})\] \[n \geqslant 2,{j_s}^{(l)} \ne {j_t}^{(l)}(s \ne t,l \leqslant s,t \leqslant n)\],and there is a constant \[{d_l} > 0\],such that \[{g_{ij}}^{(l)} = \left\{ {\begin{array}{*{20}{c}} {{d_l},(i,j) \in {r^l}} \\ {0,(else)} \end{array}} \right.\] and \[\sum\limits_{i \in L} {{g_{ij}}^{(l)}} \]is called the divergent part of p. This theorem is extetion of the theorem of circulation decomposition given by Qian Minping.  相似文献   

13.
A measure μ is called Carleson measure,iff the condition of Carleson type μ(Q~*)≤C|Q|~α(a≥1)is satisfied,where C is a constant independent of the cube Q with edge lengthq>0 in R~n and Q~*={(y,t)∈R_+~(+1)|y∈Q,0相似文献   

14.
In this paper we study the first and tiie third boundary value problems for the elliptic equation \[\begin{array}{l} \varepsilon \left( {\sum\limits_{i,j = 1}^m {{d_{i,j}}(x)\frac{{{\partial ^2}u}}{{\partial {x_i}\partial {x_j}}} + \sum\limits_{i = 1}^m {{d_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + d(x)u} } } \right) + \sum\limits_{i = 1}^m {{a_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + b(x) + c} \ = f(x),x \in G(0 < \varepsilon \le 1), \end{array}\] as the degenerated operator bas singular points, where \[\sum\limits_{i,j = 1}^m {{d_{i,j}}(x){\xi _i}{\xi _j}} \ge {\delta _0}\sum\limits_{i = 1}^m {\xi _i^2} ,({\delta _0} > 0,x \in G).\] The uniformly valid asymptotic solutions of boundary value problems have been obtained under the condition of \[\sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} > 0,or} \sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} < 0} ,\] where \(n = ({n_1}(x),{n_2}(x), \cdots ,{n_m}(x))\) is the interior normal to \({\partial G}\).  相似文献   

15.
Given a stochastic differential equation based on semimartingale with spatial parameter (1) $$\varphi _t = x_0 + \int_{t_0 }^t {F(\varphi _s ,ds) } on t \geqslant t_0 $$ and it perturbed system (2) $$\psi _t = x_0 + \int_{t_0 }^t {F\left( {\psi \alpha _s , ds} \right)} + \int_{t_0 }^t {G\left( {\psi _s , ds} \right)} on t \geqslant t_0 $$ In this paper we give some sufficient conditions under which the eventual uniform asymptotic stability of Eq. (1) is shared by Eq. (2).  相似文献   

16.
In this paper, the author proves the existence and uniqueness of nonnegative solution for the first boundary value problem of uniform degenerated parabolic equation $$\[\left\{ {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial t}} = \sum {\frac{\partial }{{\partial {x_i}}}\left( {v(u){A_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}} \right) + \sum {{B_i}(x,t,u)} \frac{{\partial u}}{{\partial {x_i}}}} + C(x,t,u)u\begin{array}{*{20}{c}} {}&{(x,t) \in [0,T]} \end{array},}\{u{|_{t = 0}} = {u_0}(x),x \in \Omega ,}\{u{|_{x \in \partial \Omega }} = \psi (s,t),0 \le t \le T} \end{array}} \right.\]$$ $$\[\left( {\frac{1}{\Lambda }{{\left| \alpha \right|}^2} \le \sum {{A_{ij}}{\alpha _i}{\alpha _j}} \le \Lambda {{\left| \alpha \right|}^2},\forall a \in {R^n},0 < \Lambda < \infty ,v(u) > 0\begin{array}{*{20}{c}} {and}&{v(u) \to 0\begin{array}{*{20}{c}} {as}&{u \to 0} \end{array}} \end{array}} \right)\]$$ under some very weak restrictions, i.e. $\[{A_{ij}}(x,t,r),{B_i}(x,t,r),C(x,t,r),\sum {\frac{{\partial {A_{ij}}}}{{\partial {x_j}}}} ,\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}} \in \overline \Omega } \times [0,T] \times R,\left| {{B_i}} \right| \le \Lambda ,\left| C \right| \le \Lambda ,\],\[\left| {\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}}} } \right| \le \Lambda ,\partial \Omega \in {C^2},v(r) \in C[0,\infty ).v(0) = 0,1 \le \frac{{rv(r)}}{{\int_0^r {v(s)ds} }} \le m,{u_0}(x) \in {C^2}(\overline \Omega ),\psi (s,t) \in {C^\beta }(\partial \Omega \times [0,T]),0 < \beta < 1\],\[{u_0}(s) = \psi (s,0).\]$  相似文献   

17.
The paper considers the random L-Dirichlet seriesf(s,ω)=sum from n=1 to ∞ P_n(s,ω)exp(-λ_ns)and the random B-Dirichlet seriesψτ_0(s,ω)=sum from n=1 to ∞ P_n(σ iτ_0,ω)exp(-λ_ns),where {λ_n} is a sequence of positive numbers tending strictly monotonically to infinity, τ_0∈R is a fixed real number, andP_n(s,ω)=sum from j=1 to m_n ε_(nj)a_(nj)s~ja random complex polynomial of order m_n, with {ε_(nj)} denoting a Rademacher sequence and {a_(nj)} a sequence of complex constants. It is shown here that under certain very general conditions, almost all the random entire functions f(s,ω) and ψ_(τ_0)(s,ω) have, in every horizontal strip, the same order, given byρ=lim sup((λ_nlogλ_n)/(log A_n~(-1)))whereA_n=max |a_(nj)|.Similar results are given if the Rademacher sequence {ε_(nj)} is replaced by a steinhaus seqence or a complex normal sequence.  相似文献   

18.
The paper deals with the following boundary problem of the second order quasilinear hyperbolic equation with a dissipative boundary condition on a part of the boundary:u_(tt)-sum from i,j=1 to n a_(ij)(Du)u_(x_ix_j)=0, in (0, ∞)×Ω,u|Γ_0=0,sum from i,j=1 to n, a_(ij)(Du)n_ju_x_i+b(Du)u_t|Γ_1=0,u|t=0=φ(x), u_t|t=0=ψ(x), in Ω, where Ω=Γ_0∪Γ_1, b(Du)≥b_0>0. Under some assumptions on the equation and domain, the author proves that there exists a global smooth solution for above problem with small data.  相似文献   

19.
In the present paper, we show that there exist a bounded, holomorphic function $\[f(z) \ne 0\]$ in the domain $\[\{ z = x + iy:\left| y \right| < \alpha \} \]$ such that $\[f(z)\]$ has a Dirichlet expansion $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ in the halfplane $\[x > {x_f}\]$ if and only if $\[\frac{a}{\pi }\log r - \sum\limits_{{u_n} < r} {\frac{2}{{{u_n}}}} \]$ has a finite upperbound on $\[[1, + \infty )\]$, where $\[\alpha \]$ is a positive constant,$\[{x_f}( < + \infty )\]$ is the abscissa of convergence of $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ and the infinite sequence $\[\{ {u_n}\} \]$ satisfies $\[\mathop {\lim }\limits_{n \to + \infty } ({u_{n + 1}} - {u_n}) > 0\]$. We also point out some necessary conditions and sufficient ones Such that a bounded holomorphic function in an angular(or half-band) domain is identically zero if an infinite sequence of its derivatives and itself vanish at some point of the domain. Here some result are generalizations of those in [4].  相似文献   

20.
The number $\[A({d_1}, \cdots ,{d_n})\]$ of solutions of the equation $$\[\sum\limits_{i = 0}^n {\frac{{{x_i}}}{{{d_i}}}} \equiv 0(\bmod 1),0 < {x_i} < {d_i}(i = 1,2, \cdots ,n)\]$$ where all the $\[{d_i}s\]$ are positive integers, is of significance in the estimation of the number $\[N({d_1}, \cdots {d_n})\]$ of solutiohs in a finite field $\[{F_q}\]$ of the equation $$\[\sum\limits_{i = 1}^n {{a_i}x_i^{{d_i}}} = 0,{x_i} \in {F_q}(i = 1,2, \cdots ,n)\]$$ where all the $\[a_i^''s\]$ belong to $\[F_q^*\]$. the multiplication group of $\[F_q^{[1,2]}\]$. In this paper, applying the inclusion-exclusion principle, a greneral formula to compute $\[A({d_1}, \cdots ,{d_n})\]$ is obtained. For some special cases more convenient formulas for $\[A({d_1}, \cdots ,{d_n})\]$ are also given, for example, if $\[{d_i}|{d_{i + 1}},i = 1, \cdots ,n - 1\]$, then $$\[A({d_1}, \cdots ,{d_n}) = ({d_{n - 1}} - 1) \cdots ({d_1} - 1) - ({d_{n - 2}} - 1) \cdots ({d_1} - 1) + \cdots + {( - 1)^n}({d_2} - 1)({d_1} - 1) + {( - 1)^n}({d_1} - 1).\]$$  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号