首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have developed organic dye-integrated thin-film liquid crystalline photonic luminescent solar concentrators (LSCs), where the chirality of the liquid crystal (LC) results in the formation of a one-dimensional photonic cavity. By varying the different LSC parameters, including dye concentration, spectral position of the photonic band-gap and the LC phase, and by using spectroscopic and electrical characterisation, we have systematically studied the effects of self-absorption, incident absorption and confinement of down-converted emission on optical efficiency. Our results demonstrate that the efficiency of our LSCs is significantly enhanced in the LC phase when the photonic band-gap is at long wavelengths (>600 nm), overcoming associated low incident absorption and higher self-absorption. We reach the significant conclusion that focusing on improving the confinement of dye-emitted photons, rather than on increasing incident absorption, is a more promising route to enhancing thin-film LC-based LSC performance.  相似文献   

2.
An anomalous strong optical absorption was measured in a cholesteric liquid crystal (CLC) at both edges of its photonic band gap. The experiment was carried out by studying the luminescence generated by the CLC sample doped with a small amount of fluorescent dye. The material was excited with monochromatic light at different angles of incidence and polarisations. Clear peaks were found in the luminescence response at angles for which the pumping wavelength coincides with the positions of the gap edges. The effect is especially noticeable for excitation under circularly polarised light of the same handedness as that of the CLC helix, and it is the highest at the long-wavelength edge. The modification of the absorption is originated by the helicoidal (photonic) structure of the material, which drastically influences the propagation of electromagnetic waves at certain frequencies and polarisations. The results were analysed numerically using an extension of the Berreman method that incorporates absorption effects. Good agreement with the experiment was found.  相似文献   

3.
Perovskite nanocrystals (NCs) have revolutionized optoelectronic devices because of their versatile optical properties. However, controlling and extending these functionalities often requires a light‐management strategy involving additional processing steps. Herein, we introduce a simple approach to shape perovskite nanocrystals (NC) into photonic architectures that provide light management by directly shaping the active material. Pre‐patterned polydimethylsiloxane (PDMS) templates are used for the template‐induced self‐assembly of 10 nm CsPbBr3 perovskite NC colloids into large area (1 cm2) 2D photonic crystals with tunable lattice spacing, ranging from 400 nm up to several microns. The photonic crystal arrangement facilitates efficient light coupling to the nanocrystal layer, thereby increasing the electric field intensity within the perovskite film. As a result, CsPbBr3 2D photonic crystals show amplified spontaneous emission (ASE) under lower optical excitation fluences in the near‐IR, in contrast to equivalent flat NC films prepared using the same colloidal ink. This improvement is attributed to the enhanced multi‐photon absorption caused by light trapping in the photonic crystal.  相似文献   

4.
以改进的对流自组装方法制备层数可控的胶体光子晶体, 并通过各向同性氧等离子体(O2 Plasma)刻蚀构造出梯度结构, 进一步通过金(Au)及无定形硅(Si)的可控沉积调节梯度结构胶体光子晶体的光子禁带, 并将该梯度结构用于罗丹明B的荧光发射增强.  相似文献   

5.
以不同阴离子表面活性剂作为添加剂种子生长法制备金纳米棒, 并考察阴离子表面活性剂种类对金纳米棒形貌及光学性质的影响。在十二烷基苯基磺酸钠(SDBS)存在下, 金纳米棒的产率明显高于使用十二烷基磺酸钠的反应体系。对添加SDBS的种子生长法制备金纳米棒的反应条件进行优化, 得到十六烷基三甲基溴化铵、SDBS、抗坏血酸和硝酸银的最佳浓度分别为0.04 mol·L-1、2.4 mmol·L-1、1.2 mmol·L-1和0.08 mmol·L-1。在此条件下, 金纳米棒的生长在30 min内完成, 所制备的金纳米棒表面等离子共振吸收峰位于823 nm, 其横纵比为(5±0.03)。当改变生长液中硝酸银浓度时, 金纳米棒的尺寸也随之发生改变。此外, 我们还探讨了SDBS的作用机理。相对于经典种子生长法, 新方法制备纳米金棒在尺寸可调性、单分散性和生物毒性方面明显改善, 可广泛应用于各种光学及生物分析。  相似文献   

6.
We have designed a simple synthetic procedure to encapsulate colloidal gold nanoparticles by electrostatic adsorption with water-soluble poly(aniline-2-carboxylic acid). The composite nanoparticles are stable in aqueous buffer and retain the respective optical reactivity of the gold colloid to refractive index increases, and of the conductive polymer to pH changes and oxidoreduction. The new composite displays, however, significant enhancements in photonic performance when compared to the individual components, which seem to result from electronic interplay between the two materials in the hybrid structure. The enhanced photonic reactivity of the composite structure offers new opportunities for biosensing application.  相似文献   

7.
The effect of the presence of a photonic crystal on the optical absorption of dye-sensitized titanium oxide solar cells is theoretically investigated herein. Different configurations in which a colloidal crystal can be implemented in such devices are modeled, and their absorptances compared. Experimental results on light-harvesting enhancement recently reported for periodically structured photoelectrodes are satisfactorily explained in terms of the appearance of multiple resonant modes localized in the absorbing layer when this is deposited onto one of the optical lattice surfaces. Longer matter-radiation interaction times for such frequencies result in higher absorption of those modes when compared to standard dye-sensitized solar cells. The effect of the finite size and the different characteristics of the photonic crystal on the optical absorption amplification effect is also discussed, new perspectives for colloidal-crystal-based photovoltaics being proposed.  相似文献   

8.
以不同阴离子表面活性剂作为添加剂种子生长法制备金纳米棒,并考察阴离子表面活性剂种类对金纳米棒形貌及光学性质的影响。在十二烷基苯基磺酸钠(SDBS)存在下,金纳米棒的产率明显高于使用十二烷基磺酸钠的反应体系。对添加SDBS的种子生长法制备金纳米棒的反应条件进行优化,得到十六烷基三甲基溴化铵、SDBS、抗坏血酸和硝酸银的最佳浓度分别为0.04 mol.L-1、2.4 mmol.L-1、1.2 mmol.L-1和0.08 mmol.L-1。在此条件下,金纳米棒的生长在30 min内完成,所制备的金纳米棒表面等离子共振吸收峰位于823 nm,其横纵比为(5±0.03)。当改变生长液中硝酸银浓度时,金纳米棒的尺寸也随之发生改变。此外,我们还探讨了SDBS的作用机理。相对于经典种子生长法,新方法制备纳米金棒在尺寸可调性、单分散性和生物毒性方面明显改善,可广泛应用于各种光学及生物分析。  相似文献   

9.
金离子掺杂对二氧化钛光催化性能的影响   总被引:49,自引:0,他引:49  
利用高压钠灯作光源,在Au^3+-TiO2悬浮溶液中,通过紫外-可见吸光度与TOC测定证实亚甲基蓝能被快速脱色降解。金离子掺杂可大大提高TiO2的光催化活性,金离子的最佳掺杂摩尔分数为0.5%。通过表征催化剂的晶型,化学组成,荧光光谱,紫外-可见吸收光谱,电场诱导表面光电压谱,提示金离子改性的机理,紫外-可见吸收光谱证实金离子掺杂可增强催化剂在可见光区域的吸收能力,由于产生金杂质能级,金离子改性TiO2能被可见光激发。适量的金杂质能降低催化剂的荧光发射强度与电场诱导表面光电压谱强度。根据不同金离掺杂摩尔分数,荧光发射强度与电场诱导表面光电压谱强度从弱到强的排序与光催化活性比强到弱的排序是一致的。  相似文献   

10.
An optical switch with two distinct resonances is formed by combining PbS nanocrystals and the conductive polymer poly[sodium 2‐(2‐ethynyl‐4‐methoxyphenoxy)acetate] (PAE) into a hybrid thin film. Infrared excitation of the nanocrystals invokes charge transfer and consecutive polaron formation in the PAE, which activates the switch for excited‐state absorption at visible frequencies. The optical modulation of the photocurrent response of the switch exhibits highly wavelength‐selective ON/OFF ratios. Transient absorption spectroscopy shows that the polaron formation is correlated with the excited state of the nanocrystals, opening up new perspectives for photonic data processing. Such correlated activated absorption can be exploited to enhance the sensitivity for one optical signal by a second light source of different frequency as part of an optical amplifier or a device with AND logic.  相似文献   

11.
Visual detection method is a means of quantitative analysis by the naked eye through the comparison of color intensity or type of change. Owing to its simplicity, low-cost, rapid operation, and equipment-free, visual detection was widely used in the detection of numerous targets. Gold nanomaterials were widely used in the construction of visual biosensors due to its unique optical properties when compared to other nanomaterials. The local surface plasmon resonance absorption peak would change with the variety in the distance or the morphology. Herein, this paper reviewed the application of gold nanomaterials in the construction of visual biosensors for the detection of target molecules. Meanwhile, we pointed out the main problems of gold nanoparticles based colorimetric methods in the determination of actual samples. The forecast of gold nanoparticles based biosensor was also provided at the end of this article.  相似文献   

12.
An optical switch with two distinct resonances is formed by combining PbS nanocrystals and the conductive polymer poly[sodium 2‐(2‐ethynyl‐4‐methoxyphenoxy)acetate] (PAE) into a hybrid thin film. Infrared excitation of the nanocrystals invokes charge transfer and consecutive polaron formation in the PAE, which activates the switch for excited‐state absorption at visible frequencies. The optical modulation of the photocurrent response of the switch exhibits highly wavelength‐selective ON/OFF ratios. Transient absorption spectroscopy shows that the polaron formation is correlated with the excited state of the nanocrystals, opening up new perspectives for photonic data processing. Such correlated activated absorption can be exploited to enhance the sensitivity for one optical signal by a second light source of different frequency as part of an optical amplifier or a device with AND logic.  相似文献   

13.
Combined chemo and photothermal therapy in in vitro testing has been achieved by means of multifunctional nanoparticles formed by plasmonic gold nanoclusters with a protecting shell of porous silica that contains an antitumor drug. We propose a therapeutic nanoplatform that associates the optical activity of small gold nanoparticles aggregates with the cytotoxic activity of 20(S)-camptothecin simultaneously released for the efficient destruction of cancer cells. For this purpose, a method was used for the controlled assembly of gold nanoparticles into stable clusters with a tailored absorption cross-section in the vis/NIR spectrum, which involves aggregation in alkaline medium of 15 nm diameter gold colloids protected with a thin silica layer. Clusters were further encapsulated in an ordered homogeneous mesoporous silica coating that provides biocompatibility and stability in physiological fluids. After internalization in 42-MG-BA human glioma cells, these protected gold nanoclusters were able to produce effective photothermolysis under femtosecond pulse laser irradiation of 790 nm. Cell death occurred by combination of a thermal mechanism and mechanical disruption of the membrane cell due to induced generation of micrometer-scale bubbles by vaporizing the water inside the channels of the mesoporous silica coating. Moreover, the incorporation of 20(S)-camptothecin within the pores of the external shell, which was released during the process, provoked significant cell death increase. This therapeutic model could be of interest for application in the treatment and suppression of non-solid tumors.  相似文献   

14.
The optical limiting performance of a covalently bonded gold nanoparticle (approximately 2 nm)/polylysine hybrid material (AuNP-PLL) was investigated using 4.1 ns laser pulses at 532 nm. The hybrid material exhibits enhanced optical limiting in comparison to individual nanoparticles, presumably due to the interparticle electromagnetic interactions between particles in close proximity. Reverse saturable absorption and/or free carrier absorption were found to be the dominant contributor(s) to the optical limiting of the hybrid material.  相似文献   

15.
The adsorption of Yeast Cytochrome c (YCC) on well defined, flat gold substrates has been studied by Spectroscopic Ellipsometry (SE) in the 245-1000 nm wavelength range. The investigation has been performed in aqueous ambient at room temperature, focusing on monolayer-thick films. In situ δΨ and δΔ difference spectra have shown reproducibly well-defined features related to molecular optical absorptions typical of the so-called heme group. The data have been reproduced quantitatively by a simple isotropic optical model, accounting for the molecular absorption spectrum and film-substrate interface effects. The simulations allowed a reliable estimate of the film thickness and the determination of the position and the shape of the so-called Soret absorption peak that, within the experimental uncertainty, is the same found for molecules in liquid. These findings suggest that YCC preserves its native structure upon adsorption. The same optical model was able to reproduce also ex situ results on rinsed and dried samples, dominated by the spectral features associated to the polypeptide chain that tend to overwhelm the heme absorption features.  相似文献   

16.
《Solid State Sciences》2012,14(3):324-329
Here, we report the synthesis of composite of polyaniline nanorod with gold by chemical oxidative method. Morphological, structural, optical and electrical transport properties of the samples are characterized by scanning electron microscope with energy dispersive spectroscopy, x-ray diffractometer, fourier transform infra red spectrometer, optical absorption spectroscopy, and low temperature electrical transport measurement. A surface plasmon absorption band is obtained from optical absorption spectrum at 520 nm and it indicates the presence of gold in polyaniline matrix. Experimental data of optical absorption fits well with Maxwell Garnet model. Tunneling and one dimensional VRH Charge transport mechanisms are followed by the samples. Positive magnetoconductivity is obtained and it can be explained with forward interference model.  相似文献   

17.
The observation of triplet-triplet absorption and emission spectra of salicylidene-m-bromo-aniline in solution, is complicated by the possible colored isomer formation during the optical pumping for yotta-photonic excitation at room temperature. The short-lived (singlet-singlet) and long-lived (triplet-triplet) absorption spectra were recorded phographically by microsecond flash and nano-second laser flash photolysis techniques. Salicylidene-m-bromo-aniline complexes were purified by repeated recrystallization until further recrystallization produced no further changes for X-ray diffraction pattern and optical absorption, emission properties. For yotta-photon excitation system, light could be faster than usual, because of heat and to many photonic collisions in the cavity, slowed down by the molecule, and stopped or frozen in a molecular orbital for a short time from nano-second to atto-second. The physical properties of the absorbed photons, in a very high photon flux density (i.e. in a photon field) are different in photonic character, and the emitted photons by the excited states behaves differently in photon field, no splitting occurs for the absorbed or emitted lines like in electrical or magnetic fields.  相似文献   

18.
利用电化学沉积方法在重离子径迹模板中制备出直径从45 nm到200 nm, 长径比达700的金纳米线阵列, 利用扫描电子显微镜(SEM)和X射线衍射(XRD)对所制备金纳米线的形貌及晶体结构进行分析, 结果表明, 在1.5 V(无参比电极)沉积电压下所制备出的直径为200 nm金纳米线沿[100]晶向具有较好择优取向. 利用紫外-可见光谱(UV-Vis)对镶嵌在透明模板中平行排列的金纳米线阵列光学特性进行研究, 发现金纳米线直径为45 nm时, 其紫外可见光谱在539 nm处有强烈吸收峰, 随着金纳米线直径增加, 吸收峰红移, 当金纳米线直径达到200 nm时, 其吸收峰峰位移至700 nm. 结合金纳米颗粒相关表面等离子体共振吸收效应对实验结果进行了讨论.  相似文献   

19.
Inverse opal films with unique optical properties have potential as photonic crystal materials and have stimulated wide interest in recent years. Herein, iridescent hybrid polystyrene/nanoparticle macroporous films have been prepared by using the breath‐figure method. The honeycomb‐patterned thin films were prepared by casting gold nanoparticle‐doped polystyrene solutions in chloroform at high relative humidity. Highly ordered hexagonal arrays of monodisperse pores with an average diameter of 880 nm are obtained. To account for the observed features, a microscopic phase separation of gold nanoparticles is proposed to occur in the breath‐figure formation. That is, individual gold nanoparticles adsorb at the solution/water interface and effectively stabilize condensed water droplets on the solution surface in a hexagonal array. Alternatively, at high nanoparticle concentrations the combination of breath‐figure formation and nanoparticle phase separation leads to hierarchical structures with spherical aggregates under a honeycomb monolayer. The films show large features in both the visible and NIR regions that are attributed to a combination of nanoparticle and ordered‐array absorptions. Organic ligand‐stabilized CdSe/CdS quantum dots or Fe3O4 nanoparticles may be loaded into the honeycomb structure to further modify the films. These results demonstrate new methods for the fabrication and functionalization of inverse opal films with potential applications in photonic and microelectronic materials.  相似文献   

20.
Generation and assembly of gold nanostructures were investigated in the organized molecular films of a series of gemini amphiphiles. The chloroauric acid, dissolved in the aqueous subphase, was incorporated into the monolayers of the gemini amphiphiles containing ethyleneamine spacers through an interfacial assembly. The in situ formed complex monolayers were transferred onto solid substrates, and gold nanoparticles were generated in the film by a chemical or photochemical reduction. Discrete gold nanoparticles with an absorption maximum at 550 nm were generated in the films by photoirradiation, while different gold nanostructures were obtained by chemical reduction. Depending on the chemical reductant, various shape and assembly of gold nanostructures were obtained. When reduced by hydroquinone, a tree-branched assembly of the nanoparticles was obtained and the film showed a broad band centered at around 900 nm. When NaBH 4 was applied, crooked nanowires or assembly of nanoparticles were obtained, depending on concentration, and the film showed absorption at 569 or 600 nm. Furthermore, by combining the photochemical and chemical reduction methods, i.e., the chloroaurate ion-incorporated film was initially irradiated with UV light and then subjected to chemical reduction, the optical absorption of the formed gold nanostructures can be regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号