首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Complexes [M(II)Gd(III){pyCO(OEt)pyC(OH)(OEt)py}?](ClO?)?·EtOH [M(II) = Cu(II) (1), Mn(II) (2), Ni(II) (3), Co(II) (4) and Zn(II) (5)] crystallize in the monoclinic Cc space group and contain one hexacoordinate M(II) ion and one enneacoordinate Gd(III) ion, bridged by three {pyCO(OEt)pyC(OH)(OEt)py}? ligands. Magnetic susceptibility measurements indicate a ferromagnetic interaction for 1 and antiferromagnetic interactions for 2-4. Using the ? = -J?(Gd(III))?(M(II)) spin Hamiltonian formalism, fits to the magnetic susceptibility data yielded J values of +0.32 cm?1 for 1, -1.7 cm?1 for 2, and -0.22 cm?1 for 3. In complex 4, the orbital contributions of Co(II) precluded the determination of the magnetic coupling. The complex follows the Curie-Weiss law with θ = -2.07 K (-1.44 cm?1).  相似文献   

2.
The mononuclear Re(IV) compound of formula (PPh(4))(2)[ReBr(4)(mal)] (1) was used as a ligand to obtain the heterobimetallic species [ReBr(4)(μ-mal)Co(dmphen)(2)]· MeCN (2), [ReBr(4)(μ-mal)Ni(dmphen)(2)] (3), [ReBr(4)(μ-mal)Mn(dmphen)(2)] (4a), [ReBr(4)(μ-mal)Mn(dmphen)(H(2)O)(2)]·dmphen·MeCN·H(2)O (4b), [ReBr(4)(μ-mal)Cu(phen)(2)]·1/4H(2)O (5) and [ReBr(4)(μ-mal)Cu(bipy)(2)] (6) (mal = malonate dianion, dmphen = 2,9-dimethyl-1,10-phenanthroline, phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine). The structures of 2 and 5 (single-crystal X-ray diffraction) are made up of neutral [ReBr(4)(μ-mal)M(AA)] dinuclear units [AA = dmphen with M = Co (2) and AA = phen with M = Cu (5)] where the metal ions are connected through a malonate ligand which exhibits simultaneously the bidentate [at the Re(IV)] and monodentate [at the M(II)] coordination modes. The carboxylate-malonate group in them adopts the anti-syn conformation with intramolecular ReM separation of 5.098(8) (2) and 4.947(2) ? (5). The magnetic properties of 1-6 were investigated in the temperature range 1.9-295 K. The magnetic behaviour of 1 is the expected for a magnetically isolated Re(IV) complex with a large value of the zero-field splitting (2D ca. -70 cm(-1)) whereas weak antiferromagnetic interactions between Re(IV) and M(II) are observed in the heterobimetallic compounds 2 (J = -0.63 cm(-1)), 3 (J = -1.37 cm(-1)), 4a (J = -1.29 cm(-1)), 5 (J = -1.83 cm(-1)) and 6 (J = -0.26 cm(-1)). Remarkably, 4b behaves as a ferrimagnetic chain with regular alternating Re(IV) and Mn(II) cations (J = -2.64 cm(-1)).  相似文献   

3.
Methanol solutions containing Cd(II), Mn(II), and a palladacycle, (dimethanol bis(N,N-dimethylbenzylamine-2C,N)palladium(II) (3), are shown to promote the methanolytic transesterification of O-methyl O-4-nitrophenyl phosphorothioate (2b) at 25 °C with impressive rate accelerations of 10(6)-10(11) over the background methoxide promoted reaction. A detailed mechanistic investigation of the methanolytic cleavage of 2a-d having various leaving group aryl substitutions, and particularly the 4-nitrophenyl derivative (2b), catalyzed by Pd-complex 3 is presented. Plots of k(obs) versus palladacycle [3] demonstrate strong saturation binding to form 2b:3. Numerical fits of the kinetic data to a universal binding equation provide binding constants, K(b), and first order catalytic rate constants for the methanolysis reaction of the 2b:3 complex (k(cat)) which, when corrected for buffer effects, give corrected (k(cat)(corr)) rate constants. A sigmoidal shaped plot of log(k(cat)(corr)) versus (s)(s)pH (in methanol) for the cleavage of 2b displays a broad (s)(s)pH independent region from 5.6 ≤ (s)(s)pH ≤ 10 with a k(minimum) = (1.45 ± 0.24) × 10(-2) s(-1) and a [lyoxide] dependent wing plateauing above a kinetically determined (s)(s)pK(a) of 12.71 ± 0.17 to give a k(maximum) = 7.1 ± 1.7 s(-1). Br?nsted plots were constructed for reaction of 2a-d at (s)(s)pH 8.7 and 14.1, corresponding to reaction in the midpoints of the low and high (s)(s)pH plateaus. The Br?nsted coefficients (β(LG)) are computed as -0.01 ± 0.03 and -0.86 ± 0.004 at low and high (s)(s)pH, respectively. In the low (s)(s)pH plateau, and under conditions of saturating 3, a solvent deuterium kinetic isotope effect of k(H)/k(D) = 1.17 ± 0.08 is observed; activation parameters (ΔH(Pd)(++) = 14.0 ± 0.6 kcal/mol and ΔS(Pd)(++)= -20 ± 2 cal/mol·K) were obtained for the 3-catalyzed cleavage reaction of 2b. Possible mechanisms are discussed for the reactions catalyzed by 3 at low and high sspH. This catalytic system is shown to promote the methanolytic cleavage of O,O-dimethyl phosphorothioate in CD3OD, producing (CD3O)2P═O(S(-)) with a half time for reaction of 34 min.  相似文献   

4.
The reaction of M(ox) x 2H(2)O (M = Co(II), Ni(II)) or K(2)(Cu(ox)(2)) x 2H(2)O (ox = oxalate dianion) with n-ampy (n = 2, 3, 4; n-ampy = n-aminopyridine) and potassium oxalate monohydrate yields one-dimensional oxalato-bridged metal(II) complexes which have been characterized by FT-IR spectroscopy, variable-temperature magnetic measurements, and X-ray diffraction methods. The complexes M(mu-ox)(2-ampy)(2) (M = Co (1), Ni (2), Cu (3)) are isomorphous and crystallize in the monoclinic space group C2/c (No. 15), Z = 4, with unit cell parameters for 1 of a = 13.885(2) A, b = 11.010(2) A, c = 8.755(1) A, and beta = 94.21(2) degrees. The compounds M(mu-ox)(3-ampy)(2).1.5H(2)O (M = Co (4), Ni (5), Cu (6)) are also isomorphous and crystallize in the orthorhombic space group Pcnn (No. 52), Z = 8, with unit cell parameters for 6 of a = 12.387(1), b = 12.935(3), and c = 18.632(2) A. Compound Co(mu-ox)(4-ampy)(2) (7) crystallizes in the space group C2/c (No. 15), Z = 4, with unit cell parameters of a = 16.478(3) A, b = 5.484(1) A, c = 16.592(2) A, and beta = 117.76(1) degrees. Complexes M(mu-ox)(4-ampy)(2) (M = Ni (8), Cu (9)) crystallize in the orthorhombic space group Fddd (No. 70), Z = 8, with unit cell parameters for 8 of a = 5.342(1), b = 17.078(3), and c = 29.469(4) A. All compounds are comprised of one-dimensional chains in which M(n-ampy)(2)(2+) units are sequentially bridged by bis-bidentate oxalato ligands with M.M intrachain distances in the range of 5.34-5.66 A. In all cases, the metal atoms are six-coordinated to four oxygen atoms, belonging to two bridging oxalato ligands, and the endo-cyclic nitrogen atoms, from two n-ampy ligands, building distorted octahedral surroundings. The aromatic bases are bound to the metal atom in cis (1-6) or trans (7-9) positions. Magnetic susceptibility measurements in the temperature range of 2-300 K show the occurrence of antiferromagnetic intrachain interactions except for the compound 3 in which a weak ferromagnetic coupling is observed. Compound 7 shows spontaneous magnetization below 8 K, which corresponds to the presence of spin canted antiferromagnetism.  相似文献   

5.
The reactions of CoX(2) (X = Cl(-), Br(-), I(-) and ClO(4)(-)) with the tripodal polypyridine N(4)O(2)-type ligand bearing pivalamide groups, bis(6-(pivalamide-2-pyridyl)methyl)(2-pyridylmethyl)amine ligand (H(2)BPPA), afforded two types of Co(II) complexes as follows. One type is purple-coloured Co(II) complexes, [CoCl(2)(H(2)BPPA)] (1(Cl)) and [CoBr(2)(H(2)BPPA)] (1(Br)) which were prepared when X = Cl(-) and Br(-), respectively. The other type is pale pink-coloured Co(II) complexes, [Co(MeOH)(H(2)BPPA)](ClO(4)(-))(2) (2·(ClO(4)(-))(2)) and [Co(MeCN)(H(2)BPPA)](I(-))(2) (2·(I(-))(2)), which were obtained when X = I(-) and ClO(4)(-), respectively. From the reaction of 1(Cl) and NaN(3), a purple-coloured complex, [Co(N(3))(2)(H(2)BPPA)] (1(azide)), was obtained. These Co(II) complexes were characterized by X-ray structural analysis, IR and reflectance spectroscopies, and magnetic susceptibility measurements. All these Co(II) complexes were shown to be in a d(7) high-spin state based on magnetic susceptibility measurements. The former Co(II) complexes revealed a six-coordinate octahedron with one amine nitrogen, three pyridyl nitrogens, and two counter anions, and one coordinated anion, Cl(-), Br(-) and N(3)(-), forming intramolecular hydrogen bonds with two pivalamide N-H groups. On the other hand, the latter Co(II) complexes showed a seven-coordinate face-capped octahedron with one amine nitrogen, three pyridyl nitrogens, two pivalamide carbonyl oxygens and MeCN or MeOH. In these structures, intramolecular hydrogen bonding interaction was not observed, and the metal ion was coordinated by the pivalamide carbonyl oxygens and solvent molecule instead of the counter anions. The difference in coordination geometries might be attributable to the coordination ability and ionic radii of the counteranions; smaller strongly binding anions such as Cl(-), Br(-) and N(3)(-) gave the former complexes, whereas bulky weakly binding anions such as I(-) and ClO(4)(-) afforded the latter ones. In order to demonstrate this hypothesis, the small stronger coordinating ligand, azide, was added to complexes 2·(ClO(4)(-))(2) to obtain the dinuclear cobalt(II) complex in which two six-coordinate octahedral cobalt(II) species were bridged with azide, 3·(ClO(4)(-)). Also, the abstraction reaction of halogen anions from complexes 1(Cl) by AgSbF(6) gave a pale pink Co(II) complex assignable to 2·(SbF(6)(-))(2).  相似文献   

6.
A new series of neutral oxamato-bridged M(II)Cu(II) chiral chains of general formula [MCuL(x)(S)(m)(H(2)O)(n)]·aS·bH(2)O [L(1)=(M)-1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (1a) and Co (1b); L(2)=(P)-1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (2a) and Co (2b)] and the analogous racemic chains of formula [MCuL(3)(S)(m)(H(2)O)(n)]·aS·bH(2)O [L(3)=1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (3a) and Co (3b)] have been prepared by reaction of the corresponding dianionic oxamatocopper(II) complex [Cu(L(x))](2-) with Mn(2+) or Co(2+) cations in either dimethylformamide (DMF) or dimethyl sulfoxide (DMSO). Solid circular dichroism (CD) spectra of the bimetallic chain compounds were recorded to establish their chiral and enantiomeric nature. They exhibit maximum positive and negative Cotton effects, each pair of enantiomeric chains being non-superimposable mirror images. The crystal structures of the Mn(II)Cu(II) (1a-3a) and the Co(II)Cu(II) (1b and 2b) chain compounds were solved by single-crystal X-ray diffraction methods. Our attempts to obtain X-ray quality crystals of 3b were unsuccessful. The values of the shortest interchain Mn···Mn and Co···Co distances are indicative of a good isolation of neighbouring chains in the crystal lattice, which is caused by the bulky aromatic ligand. Although all the Mn(II)Cu(II) and Co(II)Cu(II) chains exhibit ferrimagnetic behaviour (-J(MnCu)=18.9-26.6 cm(-1) and -J(CoCu)=19.5-32.5 cm(-1)), only the enantiopure Co(II)Cu(II) chains (1b and 2b) show slow magnetic relaxation at low temperatures (T(B)=0.6-1.8 K), which is a characteristic of single-chain magnets (SCMs) and is related to the magnetic anisotropy of the high-spin Co(II) ion. Analysis of the SCM behaviour of 1b and 2b, based on Glauber's theory for an Ising one-dimensional system, shows a thermally activated mechanism for the magnetic relaxation (Arrhenius law dependence). The energy barriers (E(a)) to reverse the magnetisation direction are 8.2 (1b) and 8.1cm(-1) (2b), whereas the pre-exponential factor (τ(0)) is 1.9×10(-8) (1b) and 6.0×10(-9) s (2b). Interestingly, the racemic Co(II)Cu(II) chain analogue, 3b, showed no evidence of SCM behaviour.  相似文献   

7.
The synthesis, structural, and spectroscopic characterization of four new coordinatively unsaturated mononuclear thiolate-ligated manganese(II) complexes ([Mn(II)(S(Me2)N(4)(6-Me-DPEN))](BF(4)) (1), [Mn(II)(S(Me2)N(4)(6-Me-DPPN))](BPh(4))·MeCN (3), [Mn(II)(S(Me2)N(4)(2-QuinoPN))](PF(6))·MeCN·Et(2)O (4), and [Mn(II)(S(Me2)N(4)(6-H-DPEN)(MeOH)](BPh(4)) (5)) is described, along with their magnetic, redox, and reactivity properties. These complexes are structurally related to recently reported [Mn(II)(S(Me2)N(4)(2-QuinoEN))](PF(6)) (2) (Coggins, M. K.; Kovacs, J. A. J. Am. Chem. Soc.2011, 133, 12470). Dioxygen addition to complexes 1-5 is shown to result in the formation of five new rare examples of Mn(III) dimers containing a single, unsupported oxo bridge: [Mn(III)(S(Me2)N(4)(6-Me-DPEN)](2)-(μ-O)(BF(4))(2)·2MeOH (6), [Mn(III)(S(Me2)N(4)(QuinoEN)](2)-(μ-O)(PF(6))(2)·Et(2)O (7), [Mn(III)(S(Me2)N(4)(6-Me-DPPN)](2)-(μ-O)(BPh(4))(2) (8), [Mn(III)(S(Me2)N(4)(QuinoPN)](2)-(μ-O)(BPh(4))(2) (9), and [Mn(III)(S(Me2)N(4)(6-H-DPEN)](2)-(μ-O)(PF(6))(2)·2MeCN (10). Labeling studies show that the oxo atom is derived from (18)O(2). Ligand modifications, involving either the insertion of a methylene into the backbone or the placement of an ortho substituent on the N-heterocyclic amine, are shown to noticeably modulate the magnetic and reactivity properties. Fits to solid-state magnetic susceptibility data show that the Mn(III) ions of μ-oxo dimers 6-10 are moderately antiferromagnetically coupled, with coupling constants (2J) that fall within the expected range. Metastable intermediates, which ultimately convert to μ-oxo bridged 6 and 7, are observed in low-temperature reactions between 1 and 2 and dioxygen. Complexes 3-5, on the other hand, do not form observable intermediates, thus illustrating the effect that relatively minor ligand modifications have upon the stability of metastable dioxygen-derived species.  相似文献   

8.
The ligating properties of the 24-membered macrocyclic dinucleating hexaazadithiophenolate ligand (L(Me))2- towards the transition metal ions Cr(II), Mn(II), Fe(II), Co(II), Ni(II) and Zn(II) have been examined. It is demonstrated that this ligand forms an isostructural series of bioctahedral [(L(Me))M(II)2(OAc)]+ complexes with Mn(II) (2), Fe(II) (3), Co(II) (4), Ni(II) (5) and Zn(II) (6). The reaction of (L(Me))2- with two equivalents of CrCl2 and NaOAc followed by air-oxidation produced the complex [(L(Me))Cr(III)H2(OAc)]2+ (1), which is the first example for a mononuclear complex of (L(Me))2-. Complexes 2-6 contain a central N3M(II)(mu-SR)2(mu-OAc)M(II)N3 core with an exogenous acetate bridge. The Cr(III) ion in is bonded to three N and two S atoms of (L(Me))2- and an O atom of a monodentate acetate coligand. In 2-6 there is a consistent decrease in the deviations of the bond angles from the ideal octahedral values such that the coordination polyhedra in the dinickel complex 5 are more regular than in the dimanganese compound 2. The temperature dependent magnetic susceptibility measurements reveal the magnetic exchange interactions in the [(L(Me))M(II)2(OAc)]+ cations to be relatively weak. Intramolecular antiferromagnetic exchange interactions are present in the Mn(II)2, Fe(II)2 and Co(II)2 complexes where J = -5.1, -10.6 and approximately -2.0 cm(-1) (H = -2JS1S2). In contrast, in the dinickel complex 5 a ferromagnetic exchange interaction is present with J = +6.4 cm(-1). An explanation for this difference is qualitatively discussed in terms of the bonding differences.  相似文献   

9.
Two new mixed aza-thia crowns 5-aza-2,8-dithia[9]-(2,9)-1,10-phenanthrolinophane (L(4)) and 2,8-diaza-5-thia[9]-(2,9)-1,10-phenanthrolinophane (L(7)) have been synthesized and characterized. The coordination behavior of L(4) and L(7) toward the metal ions Cu(II), Zn(II), Pb(II), Cd(II), Hg(II), and Ag(I) was studied in aqueous solution by potentiometric methods, in CD3CN/D2O 4:1 (v/v) by (1)H NMR titrations and in the solid state. The data obtained were compared with those available for the coordination behavior toward the same metal ions of structurally analogous mixed donor macrocyclic ligands L(1)-L(3), L(5), L(6): all these contain a phenanthroline subunit but have only S/O/N(aromatic) donor groups in the remaining portion of the ring and are, therefore, less water-soluble than L(4) and L(7). The complexes [Cd(NO3)2(L(5))], [Pb(L(7))](ClO4)2 x 1/2MeCN, [Pb(L(4))](ClO4)2 x MeCN, and [Cu(L(7))](ClO4)2 x 3/2MeNO2 were characterized by X-ray crystallography. The efficacy of L(1)-L(7) in competitive liquid-liquid metal ion extraction of Cu(II), Zn(II), Cd(II), Pb(II), Ag(I), and Hg(II) was assessed. In the absence of Hg(II), a clear extraction selectivity for Ag(I) was observed in all systems investigated.  相似文献   

10.
The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4) metallic core, indicates large spin ground states, with likely values of S = 16 (±1) for each. Solid state AC susceptibility measurements confirm the large spin ground state values and is also suggestive of SMM behaviour for 2-5 as observed via the onset of frequency dependent out-of-phase peaks.  相似文献   

11.
The osma(II)cycles [Os(phpy)(LL)(2)]PF(6) (LL = 1,10-phen (3a) and 4,4'-Me(2)-2,2'-bpy (3b)) are made from [(eta(6)-C(6)H(6))Os(micro-Cl)Cl](2) (1) either via transmetalation using the [Hg(phpy)(2)] organomercurial in MeOH or via the sp(2)-C-H bond cleavage of 2-phenylpyridine (phpyH) in MeCN to afford [(eta(6)-C(6)H(6))Os(phpy)Cl] or [(eta(6)-C(6)H(6))Os(phpy)(MeCN)]PF(6), respectively. The latter two react cleanly with LL to give 3a and 3b, the M(II/III) redox potentials of which equal 30 and -100 mV (vs Ag/AgCl), respectively. The electrochemically made Os(III) species oxidize rapidly reduced glucose oxidase. The second-order rate constant equals 1.1 x 10(7) M(-)(1) s(-)(1) for 3a at 25 degrees C, pH 7.  相似文献   

12.
The ligand 2-mercapto-3,5-di-tert-butylaniline, H[L(AP)], an o-aminothiophenol, reacts with metal(II) salts of Ni and Pd in CH3CN or C2H5OH in the presence of NEt3 under strictly anaerobic conditions with formation of beige to yellow cis-[M(II)(L(AP))2] (M = Ni (1), Pd (2)) where (L(AP))1- represents the o-aminothiophenolate(1-) form. The crystal structure of cis-[Pd(II)(L(AP))2][HN(C2H5)3][CH3CO2] has been determined by X-ray crystallography. In the presence of air the same reaction produces dark blue solutions from which mixtures of the neutral complexes trans/cis-[M(II)(L(ISQ))2] (M = Ni (1a/1b), Pd (2a/2b), and Pt (3a/3b)) have been isolated as dark blue-black solid materials. By using HPLC the mixture of 3a/3b has been separated into pure samples of 3a and 3b, respectively; (L(ISQ))1- represents the o-iminothionebenzosemiquinonate(1-) pi-radical. The structures of 1a.dmf and 3a.CH2Cl2 have also been determined. All compounds are square-planar and diamagnetic. 1H NMR spectroscopy established the cis <==> trans equilibrium of 1a/1b, 2a/2b, and 3a/3b in CH2Cl2 solution where the isomerization rate is very fast for the Ni, intermediate for the Pd, and very slow for the Pt species. It is shown that the electronic structures of 1a/1b, 2a/2b, 3a, and 3b are best described as diradicals with a singlet ground state. The spectro- and electrochemistries of all complexes display the usual full electron transfer series where the monocation, the neutral species, the mono- and dianions have been spectroscopically characterized. X-band EPR spectra of the monocations [1a/1b]+ and [3a]+ support the assignment of an oxidation-state distribution as predominantly [M(II)(L(ISQ))(L(IBQ))]+ where (L(IBQ))0 represents the o-iminothionequinone level. In contrast, the EPR spectra of the monoanions [1a/1b]- and [3a]- indicate an [M(II)(L(ISQ))(L(AP)-H)]- distribution but with a significant contribution of the [M(I)(L(ISQ))(2)]- resonance hybrid; (L(AP)-H)2- represents the o-imidothiophenolato(2-) oxidation level. Analysis of the geometric features of 120 published structures of complexes containing ligands of the o-aminothiophenolate type show that high precision X-ray crystallography allows to discern the differing protonation and oxidation levels of these ligands. o-Aminothiophenolates are unequivocally shown to be noninnocent ligands; the (L(ISQ))1- radical form is quite prevalent in coordination compounds and the electronic structure of a number of published complexes must be reconsidered.  相似文献   

13.
The macrocycles L(1)-L(3) incorporating N(2)S(3)-, N(2)S(2)O-, and N(2)S(2)-donor sets, respectively, and containing the 1,10-phenanthroline unit interact in acetonitrile solution with heavy metal ions such as Pb(II), Cd(II), and Hg(II) to give 1:1 ML, 1:2 ML(2), and 2:1 M(2)L complex species, which specifically modulate the photochemical properties of the ligands. The stoichiometry of the complex species formed during spectrofluorometric titrations and their formation constants in MeCN at 25 degrees C were determined from fluorescence vs M(II)/L molar ratio data. The complexes [Pb(L(1))][ClO(4)](2).(1)/(2)H(2)O (1), [Pb(L(2))][ClO(4)](2).MeNO(2) (1a), [Pb(L(3))(2)][ClO(4)](2).2MeCN (1b), and [Cd(L(3))][NO(3)](2) (2b) were also characterized by X-ray diffraction studies. The conformation adopted by L(1)-L(3) in these species reveals the aliphatic portion of the rings folded over the plane containing the heteroaromatic moiety with the ligands trying to encapsulate the metal center within their cavity. In 1, 1a, and 2b the metal ion completes the coordination sphere by interacting with counteranion units and solvent molecules. On the contrary, the 1:2 complex 1b shows Pb(II) sandwiched between two symmetry-related molecules of L(3) reaching an overall [4N + 4S] eight-coordination.  相似文献   

14.
The cyclotetraphosphate ion (P(4)O(12)(4)(-)) as a PPN (PPN = (PPh(3))(2)N(+)) salt reacts with [MCl(cod)](2) (M = Rh, Ir; cod = 1,5-cyclooctadiene) to give the dinuclear complexes (PPN)(2)[[M(cod)](2)(P(4)O(12))], in which the two metal moieties are situated trans to each other with respect to the P(4)O(4) ring in the solid state. In solution, however, these complexes exist as mixtures of trans and cis isomers. On the other hand, the P(4)O(12)(4)(-) ion reacts with 4 equiv of [Rh(cod)(MeCN)(x)](+) cation to give the tetranuclear complex [[Rh(cod)](4)(P(4)O(12))], where the four Rh(cod) fragments are bound to the P(4)O(12) platform alternately on both sides of the P(4)O(4) ring. Dinuclear P(4)O(12) complexes of ruthenium and palladium are also synthesized.  相似文献   

15.
Strapping two salicylaldoxime units together with aliphatic α,Ω-aminomethyl links in the 3-position gives ligands which allow the assembly of the polynuclear complexes [Fe(7)O(2)(OH)(6)(H(2)L1)(3)(py)(6)](BF(4))(5)·6H(2)O·14MeOH (1·6H(2)O·14MeOH), [Fe(6)O(OH)(7)(H(2)L2)(3)](BF(4))(3)·4H(2)O·9MeOH (2·4H(2)O·9MeOH) and [Mn(6)O(2)(OH)(2)(H(2)L1)(3)(py)(4)(MeCN)(2)](BF(4))(5)(NO(3))·3MeCN·H(2)O·5py (3·3MeCN·H(2)O·5py). In each case the metallic skeleton of the cluster is based on a trigonal prism in which two [M(III)(3)O] triangles are tethered together via three helically twisted double-headed oximes. The latter are present as H(2)L(2-) in which the oximic and phenolic O-atoms are deprotonated and the amino N-atoms protonated, with the oxime moieties bridging across the edges of the metal triangles. Both the identity of the metal ion and the length of the straps connecting the salicylaldoxime units have a major impact on the nuclearity and topology of the resultant cluster, with, perhaps counter-intuitively, the longer straps producing the "smallest" molecules.  相似文献   

16.
In the present study the interaction of Fe(II) and Ni(II) with the related expanded quaterpyridines, 1,2-, 1,3- and 1,4-bis-(5'-methyl-[2,2']bipyridinyl-5-ylmethoxy)benzene ligands (4-6 respectively), incorporating flexible, bis-aryl/methylene ether linkages in the bridges between the dipyridyl domains, was shown to predominantly result in the assembly of [M(2)L(3)](4+) complexes; although with 4 and 6 there was also evidence for the (minor) formation of the corresponding [M(4)L(6)](8+) species. Overall, this result contrasts with the behaviour of the essentially rigid 'parent' quaterpyridine 1 for which only tetrahedral [M(4)L(6)](8+) cage species were observed when reacted with various Fe(II) salts. It also contrasts with that observed for 2 and 3 incorporating essentially rigid substituted phenylene and biphenylene bridges between the dipyridyl domains where reaction with Fe(II) and Ni(II) yielded both [M(2)L(3)](4+) and [M(4)L(6)](8+) complex types, but in this case it was the latter species that was assigned as the thermodynamically favoured product type. The X-ray structures of the triple helicate complexes [H(2)O?Ni(2)(4)(3)](PF(6))(4)·THF·2.2H(2)O, [Ni(2)(6)(3)](PF(6))(4)·1.95MeCN·1.2THF·1.8H(2)O, and the very unusual triple helicate PF(6)(-) inclusion complex, [(PF(6))?Ni(2)(5)(3)](PF(6))(3)·1.75MeCN·5.25THF·0.25H(2)O are reported.  相似文献   

17.
Isolation of the free bicyclic tetraamine, [3(5)]adamanzane.H(2)O (1,5,9,13-tetraazabicyclo[7.7.3]nonadecane.H(2)O), is reported along with the synthesis and characterization of a copper(II) complex of the smaller macrocycle [(2.3)(2).2(1)]adamanzane (1,5,9,12-tetraazabicyclo[7.5.2]hexadecane) and of three cobalt(II), four nickel(II), one copper(II), and two zinc(II) complexes with [3(5)]adamanzane. For nine of these compounds (2-8, 10b, and 12) the single-crystal X-ray structures were determined. The coordination geometry around the metal ion is square pyramidal in [Cu([(2.3)(2).2(1)]adz)Br]ClO(4) (2) and trigonal bipyramidal in the isostructural structures [Cu([3(5)]adz)Br]Br (3), [Ni([3(5)]adz)Cl]Cl (5), [Ni([3(5)]adz)Br]Br (6), and [Co([3(5)]adz)Cl]Cl (8). In [Ni([3(5)]adz)(NO(3))]NO(3) (4) and [Ni([3(5)]adz)(ClO(4))]ClO(4) (7) the coordination geometry around nickel(II) is a distorted octahedron with the inorganic ligands at cis positions. The coordination polyhedron around the metal ion in [Co([3(5)]adz)][ZnCl(4)] (10b) and [Zn([3(5)]adz)][ZnCl(4)] (12) is a slightly distorted tetrahedron. Anation equilibrium constants were determined spectrophotometrically for complexes 2-6 at 25 and 40 degrees C and fall in the region 2-10 M(-1) for the halide complexes and 30-65 M(-1) for the nickel(II) nitrate complex (4). Rate constants for the dissociation of the macrocyclic ligand from the metal ions in 5 M HCl were determined for complexes 2, 3, 5, 8, 10, and 12. The reaction rates vary from half-lives at 40 degrees C of 14 min for the dissociation of the Zn([3(5)]adz)(2+) complex (12) to 14-15 months for the Ni([3(5)]adz)Cl(+) ion (5).  相似文献   

18.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

19.
Bellomo A 《Talanta》1970,17(11):1109-1114
The factors influencing the formation of metal hexacyano-ferrate(II) complexes have been examined and the experimental conditions leading to formation of M(2)Fe(CN)(6), and K(2)M(3)[Fe(CN)(6)](2) have been studied, where M is Cu(II) or Zn(II); Ag(I) yields Ag(4)Fe(CN)(6). and KAg(3)Fe(CN)(6) and Pb(II) yields only Pb(2)Fe(CN)(6). Measurements made at constant ionic strength obtained by addition of K(2)SO(4) show how the potassium ion affects the stabilization of the complexes. The free energy changes and K(sp) values for the complexes have been calculated.  相似文献   

20.
Neutral dimeric metallocyclic complexes of type [M(2)(L(1))(2)B(n)] (where M = cobalt(II), nickel(II) and zinc(II), L(1) is the doubly deprotonated form of a 1,3-aryl linked bis-beta-diketone ligand of type 1,3-bis(RC(O)CH(2)C(O))C(6)H(4) (R=Me, n-Pr, t-Bu) and B is pyridine (Py) or 4-ethylpyridine (EtPy)) have been synthesised, adding to similar complexes already reported for copper(II). New lipophilic ligand derivatives with R = octyl or nonyl were also prepared for use in solvent extraction experiments. Structural, electrochemical and solvent extraction investigations of selected metal complex systems from the above series are reported, with the X-ray structures of [Co(2)(L(1))(2)(Py)(4)] x 2.25CHCl(3) x 0.5H(2)O (R=Pr), [Co(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Ni(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Zn(2)(L(1))(2)(EtPy)(2)] (R=Me) and [Zn(2)(L(1))(2)(EtPy)(4)] (R=t-Bu) being presented. The electrochemistry of H(2)L(1) (R=t-Bu) and of [Fe(2)(L(1))(3)], [Co(2)(L(1))(2)(Py)(4)], [Ni(2)(L(1))(2)(Py)(4)], [Cu(2)(L(1))(2)] and [Zn(2)(L(1))(2)(Py)(2)] has been examined. Oxidative processes for the complexes are dominantly irreversible, but several examples of quasireversible behaviour were observed and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as a metal-centred oxidation. The reduction processes for the respective metal complexes are not simple, and irreversible in most cases. Solvent extraction studies (water/chloroform) involving variable concentrations of metal, bis-beta-diketone and heterocyclic base have been performed for cobalt(II) and zinc(II) using a radiotracer technique to probe the stoichiometries of the extracted species in each case. Synergism was observed when 4-ethylpyridine was added to the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies show a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号