首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚合物本体异质结型太阳能电池研究进展   总被引:8,自引:0,他引:8  
聚合物本体异质结型太阳能电池是一种基于电子给体 /受体混合物薄膜的高效率有机光伏器件。文中介绍了近年来聚合物本体异质结型太阳能电池的最新研究进展 ,指出了目前存在的问题和今后的发展方向  相似文献   

2.
《印度化学会志》2023,100(1):100857
Recently, the use of CZTS as the basis for other generation of low cost thin films solar cells has stimulated further researches. Its excellent p-type absorber nature, relatively high absorption coefficient and ideal energy band-gap of 1.5eV motivated these efforts. Additionally, CZTS consist of earth-abundant, cheap and non-toxic elements with very low manufacturing cost. Initially, copper indium gallium selenide (CIGS) solar cell device emerged but suffered limitations in further development because of rare indium and gallium in the device structure therefore, CZTS is recently preferred as an alternative to CIGS commercial solar cell absorber layer. In this work, solution mixture of CZTS and PVA was deposited on a substrate at temperature of 150 °C. Sensitive spray pyrolysis was used to grow the thin films where calculated amount of the precursor mixture was allowed to fall and be deposited on a heated substrate to form CZTS/PVA thin films. Subsequently, the thin film samples were annealed at a temperature of 200oCfor 1 h to achieving pure crystalline thin film formation. SEM, XRD analysis, Optical, Solid State properties and Raman analysis were studied. The XRD analysis showed that the thin films fell into the pure kesterite structure of CZTS. Results show that produced thin films exhibited higher absorption coefficient and optical conductivity than pure CZTS, 106 m?1 and 1014(S?1) against 104cm?1 and 1012(S?1) respectively. The band-gap is between 1.53eV and 1.73eV. Using a PVA concentration of 0.05 M yielded highest absorbance and optical conductivity with lowest real dielectric constant and transmittance. These improved optical, electrical and solid state properties suitably qualify these thin films as absorber layer material for solar cell applications.  相似文献   

3.
Power generation through photovoltaics (PV) has been growing at an average rate of 40% per year over the last decade; but has largely been fuelled by conventional Si-based technologies. Such cells involve expensive processing and many alternatives use either toxic, less-abundant and or expensive elements. Kesterite Cu(2)ZnSnS(4) (CZTS) has been identified as a solar energy material composed of both less toxic and more available elements. Power conversion efficiencies of 8.4% (vacuum processing) and 10.1% (non-vacuum processing) from cells constructed using CZTS have been achieved to date. In this article, we review various deposition methods for CZTS thin films and the synthesis of CZTS nanoparticles. Studies of direct relevance to solar cell applications are emphasised and characteristic properties are collated.  相似文献   

4.
The quaternary semiconductor Cu(2)ZnSnS(4) (CZTS) has attracted a lot of attention as a possible absorber material for solar cells due to its direct bandgap and high absorption coefficient. In this study, photovoltaic CZTS nanocrystalline film with a grain size of about 10 nm has been grown on a c-plane sapphire substrate by radio-frequency magnetron sputtering. With increasing the temperature from 86 to 323 K, the A(1) phonon mode shows a red shift of about 9 cm(-1) due to the combined effects of thermal expansion and the anharmonic coupling to the other phonons. Optical and electronic properties of the CZTS film have been investigated by transmittance spectra in the temperature range of 8-300 K. Near-infrared-ultraviolet dielectric functions have been extracted with the Tauc-Lorentz dispersion model. The fundamental band gap E(0), and higher-energy critical points E(1) and E(2) are located at 1.5, 3.6, and 4.2 eV, respectively. Owing to the influences of electron-phonon interaction and the lattice expansion, the three interband transitions present a red shift trend with increasing temperature. It was found that the absorption coefficient in the visible region increases due to the modifications of electronic band structures. The detailed study of the optical properties of CZTS film can provide an experimental basis for CZTS-based solar cell applications.  相似文献   

5.
通过掺杂吸收光谱在可见光波段的量子点可提高聚合物对可见光的吸收,因此掺杂CdSe/ZnS核-壳结构量子点(CQDs)能提高聚(3-己基噻吩):[6,6]-苯基-C61-丁酸甲酯(P3HT:PCBM)体异质结太阳电池的能量转换效率.本文研究了CdSe/ZnS量子点在P3HT:PCBM中的不同掺杂比例及其表面配体对太阳电池光伏性能的影响,优化器件ITO(氧化铟锡)/PEDOT:PSS(聚(3,4-乙撑二氧噻吩:聚苯乙烯磺酸)/P3HT:PCBM:(CdSe/ZnS)/Al的能量转换效率达到了3.99%,与相同条件下没有掺杂量子点的参考器件ITO/PEDOT:PSS/P3HT:PCBM/Al相比,其能量转换效率提高了45.1%.  相似文献   

6.
Two perylene bisimides based non-fullerene small molecules, H-DIPBI and B-DIPBI, are applied into inverted planar heterojunction perovskite solar cells. The power conversion efficiency up to 11.6% has been achieved for device with B-DIPBI, indicating that non-fullerene acceptor can function as the electron transport layer to replace PCBM in perovskite solar cells.  相似文献   

7.
We report on a novel approach to integrate colloidal anatase TiO(2) nanorods as key functional components into polymer bulk heterojunction (BHJ) photovoltaic devices by means of mild, all-solution-based processing techniques. The successful integration of colloidal nanoparticles in organic solar cells relies on the ability to remove the long chain insulating ligands, which indeed severely reduces the charge transport. To this aim we have exploited the concomitant mechanisms of UV-light-driven photocatalytic removal of adsorbed capping ligands and hydrophilicization of TiO(2) surfaces in both solid-state and liquid-phase conditions. We have demonstrated the successful integration of the UV-irradiated films and colloidal solutions of TiO(2) nanorods in inverted and conventional solar cell geometries, respectively. The inverted devices show a power conversion efficiency of 2.3% that is a ca. three times improvement over their corresponding cell counterparts incorporating untreated TiO(2), demonstrating the excellent electron-collecting property of the UV-irradiated TiO(2) films. The integration of UV-treated TiO(2) solutions in conventional devices results in doubled power conversion efficiency for the thinner active layer and in maximum power conversion efficiency of 2.8% for 110 nm thick devices. In addition, we have demonstrated, with the support of device characterizations and optical simulations, that the TiO(2) nanocrystal buffer layer acts both as electron-transporting/hole-blocking material and optical spacer.  相似文献   

8.
Kesterite Cu_2ZnSn(S,Se)_4(CZTSSe)solar cells have drawn worldwide attention for their promising photovoltaics performance and earth-abundant element composition,yet the record efficiency of this type of device is still far lower than its theoretical conversion efficiency.Undesirable band alignment and severe non-radiative recombination at CZTSSe/CdS heterojunction interfaces are the major causes limiting the current/voltage output and overall device performance.Herein,we propose a novel two-step CdS deposition strategy to improve the quality of CZTSSe/CdS heterojunction interface and thereby improve the performance of CZTSSe solar cell.The two-step strategy includes firstly pre-deposits CdS thin layer on CZTSSe absorber layer by chemical bath deposition(CBD),followed with a mild heat treatment to facilitate element inter-diffusion,and secondly deposits an appropriate thickness of CdS layer by CBD to cover the whole surface of pre-deposited CdS and CZTSSe layers.The solar energy conversion efficiency of CZTSSe solar cells with two-step deposited CdS layer approaches to 8.76%(with an active area of about 0.19 cm~2),which shows an encouraging improvement of over 87.98% or 30.16% compared to the devices with traditional CBD-deposited CdS layer without and with the mild annealing process,respectively.The performance enhancement by the two-step CdS deposition is attributed to the formation of more favorable band alignment at CZTSSe/CdS interface as well as the effective decrease in interfacial recombination paths on the basis of material and device characterizations.The two-step CdS deposition strategy is simple but effective,and should have large room to improve the quality of CZTSSe/CdS heterojunction interface and further lift up the conversion efficiency of CZTSSe solar cells.  相似文献   

9.
We investigated growth of GaN pn-junction layers grown on silicon(111) by plasma-assisted molecular beam epitaxy system and its application for photo-devices. Si and Mg were used as n- and p-dopants, respectively. The reflection high energy electron diffraction images indicated a good surface morphology of GaN pn-junction layer. The thickness of GaN pn-junctions layers was about 0.705 nm. The absence of cubic phase GaN showed that this layer possessed hexagonal structure. According to XRD symmetric rocking curve ω/2θ scans of (0002) plane at room temperature, the full width at half-maximun of GaN pn-junction sample was calculated as 0.34o, indicating a high quality layer of GaN pn-junction. Surprisingly, there was no quenching of the A1(LO) peak, with the presence of Si- and Mg-dopants in sample. The pn-junctions sample has a good optical quality which was measured by thephotoluminescence system. For photo-devices applications, Ni and Al were used as front and back contacts, respectively. The current-voltage characteristics of the devices showed the typical rectifying behavior of heterojunction. The photo-current measurement was performed using a visible-lamp under forward and reverse biases. From the temperature-dependent measurements, the current at low bias exhibited much stronger temperature dependence and weaker field dependence. The effect of thermal annealing on front contact Ni was also carried out. The front contact Ni was annealed at 400 and 600 oC for 10 min in the nitrogen ambient. The results showed that 600 oC treated sample had a higher gain at 1.00 V/e than 400 oC treated and untreated samples.  相似文献   

10.
We introduce a novel method to easily fabricate nanopatterns at ambient conditions using solvent-assisted soft nanolithography. For this purpose, a P3HT/PCBM bilayer, one of well-known standard models of solar cell systems, was chosen to optimize bilayer solar cells using the new lithographic technique. The nanopatterns of P3HT made using this method have improved device efficiency compared to planar bilayer heterojunction of the solar cell. The new patterning process creates solar cell devices with a greater than 2-fold increase in power conversion efficiency (PCE) compared to an otherwise equivalent, flat device. This improvement in efficiency is due to the increased interfacial area created by the patterning process. This result demonstrates the feasibility of extensive applications toward nanolithography, relevant to device fabrication, such as electronic devices.  相似文献   

11.
We prepared the polymer solar cell based on poly(3-hexylthiophene)(P3HT)/fullerene derivative PCBM(PCBM=[6,6]-phenyl-C61-butyric acid methyl ester) heterojunction and investigated the irradiation intensi- ty-dependent charge recombination dynamics of heterojunction employing nanosecond transient absorption spectroscopy with bias light so as to simulate the photophysical process in heterojunction when the photovoltaic device is on operation. The experimental data exhibit that the yield of free charges gradually decreases and the loss of mobile carriers originated from bimolecular recombination simultaneously increases as the irradiation intensity gradually enhances. This indicates that the polymer solar cell is much suitably used at a low irradiation intensity.  相似文献   

12.
利用微波协助的Stille缩合聚合反应方法合成了基于双噻吩苯并噻二唑和异靛单元的受体-受体聚合物HFTBT-DA865,并对其热稳定性、光物理性能、电化学性质和本体异质结太阳能电池性能进行了研究.该聚合物易溶于邻二氯苯和邻二甲苯等溶剂,具有优异的溶液加工性能.5%热分解温度为389℃,玻璃化转变温度为168℃,说明其具有较好的热稳定性能.对旋涂速度和温度进行优化,所得太阳能电池器件的光电转换效率为2.28%,开路电压为0.83 V,短路电流为-5.70 mA/cm^2,填充因子为48.9%.电化学性能和密度泛函理论估算结果表明,聚合物与受体材料PC71BM相近的最低未占分子轨道(LUMO)值及其平面性可能是影响光伏性质的重要因素.通过调控共聚单体或优化受体材料,器件性能可进一步提高.对受体-受体(A-A)类聚合物材料太阳能电池性能的研究表明,此类材料是一类潜在的聚合物太阳能电池材料.  相似文献   

13.
We present recent progresses on applying the theoretical models and computational tools in assessing the performance of organic solar cells, especially the bulk heterojunction solar cells. Both the continuum device model and the dynamic Monte Carlo model are developed to investigate the photocurrent-voltage characteristics based on the exciton and charge carrier dynamics. Insights into key factors influencing the organic photovoltaic performances have been gained from these studies.  相似文献   

14.
The performance of organic photovoltaic devices based upon bulk heterojunction blends of donor and acceptor materials has been shown to be highly dependent on the thin film microstructure. In this tutorial review, we discuss the factors responsible for influencing blend microstructure and how these affect device performance. In particular we discuss how various molecular design approaches can affect the thin film morphology of both the donor and acceptor components, as well as their blend microstructure. We further examine the influence of polymer molecular weight and blend composition upon device performance, and discuss how a variety of processing techniques can be used to control the blend microstructure, leading to improvements in solar cell efficiencies.  相似文献   

15.
纳米异质结光催化剂制氢研究进展   总被引:2,自引:0,他引:2  
随着世界经济的迅猛发展,人们生活水平飞速提高的同时,能源短缺和环境污染成为当前人类可持续发展过程中的两大严峻问题.氢作为一种能源载体,能量密度高,可储可运,且燃烧后唯一产物是水,不污染环境,被认为是今后理想的无污染可再生替代能源.20世纪60年代末,日本学者Fujishima和Honda发现光照n-型半导体TiO2电极可导致水分解,使人们认识到了利用半导体光催化分解水制氢可直接将太阳能转化为氢能的可行性,利用半导体光催化分解水制氢逐渐成为能源领域的研究热点之一.然而,单相光催化材料的光生电子和空穴复合仍然严重,光催化制氢效率低,无法满足实际生产需要;另外,单相光催化材料不能同时具备较窄的禁带、较负的导带和较正的价带.近年来,国内外学者在新型光催化材料的探索、合成和改性以及光催化理论等领域开展了大量研究工作.不断有不同种类的半导体材料被研究和发展为光催化分解水制氢催化材料.例如,具有可见光催化活性的阴、阳离子掺杂TiO2,具有可见光下光解纯水能力的In0.9Ni0.1TaO4,在256 nm紫外光辐照下量子效率达到56%的镧掺杂NaTaO3,CdS以及(AgIn)xZn2(1-x)S2等.在现有的光催化材料中,单相光催化材料可以通过掺杂、形貌控制合成、晶面控制合成、染料敏化和表面修饰等提高其光催化活性.复合型光催化材料则能通过组合不同电子结构的半导体材料并调控其光生载流子迁移获得优异的光催化制氢性能,大幅拓展了光催化制氢材料的研究范围和提升了光催化制氢性能.构建异质结能够有效提高光生电子-空穴分离效率,促使更多的光生电子参与光催化制氢反应,提高其氧化还原能力,从而提高其光催化制氢效率.在I-型纳米异质结中,半导体A的价带高于半导体B,而导带则是前者高于后者,光照时,光生电子-空穴对的迁移速率是不同的,延长了光生电子的寿命,从而提高了材料的光催化活性.但是在I-型异质结中,电子和空穴都集中在B半导体上,这样光生电子-空穴对的复合几率仍然很高.II-型异质结中电子和空穴的富集处各不相同,因此使用范围也更广泛一些.光辐照激发时,光生电子从半导体B的导带迁移到半导体A的导带上,而空穴则从半导体A的价带向半导体B的价带上转移,从而形成了载流子的空间隔离,有效抑制其复合.但是,在这个类型的异质结中,光生电子转移到了相对位置较低的导带,而空穴则转移到相对位置较高的价带,这样就降低了光生电子的还原能力和空穴的氧化能力.pn型异质结中,在两种半导体相互接触时,由于电子-空穴对的扩散作用,两种半导体的能带发生漂移,其中p型上移,n型下移.而且在两种半导体异质结的界面处会产生空间电荷层,在这个电荷层的作用下,在异质结界面上形成内建电场.在合适波长的光源辐照的条件下,两种半导体同时被激发,光生电子在内建电场的作用下,从p型半导体快速迁移到n型半导体上,而n型半导体中留在价带上的空穴则快速迁移到p型半导体上,这样光生电子-空穴对就得到了有效的分离.在以Z型载流子迁移为主导的异质结构材料中摈弃了中间媒介,通过控制界面的载流子迁移使低能量的光生电子与空穴直接复合保留高能量的光生电子-空穴,从而提高了材料的光催化效率.本文介绍了纳米异质结光催化剂在设计合成方面的研究进展,总结了几种纳米异质结(I-型、II-型、pn-型及Z-型)的光催化原理及其在制取氢气方面的研究进展,并展望了研究发展方向.期望本文能够加深研究者对该领域的理解,为今后高效光催化材料的设计提供帮助和指导.  相似文献   

16.
《Solid State Sciences》2012,14(7):857-863
Metal oxide (MO) semiconductors hold the promise for the development of high efficiency solar cells with low cost. Currently heterostructure type MO solar cells have been theoretically and experimentally studied, demonstrated their potential for applications. This paper highlights a numerical investigation on Schottky type MO solar cells using CuO as the absorption layer. It is shown that the doping concentration, absorption layer thickness, barrier height and back surface field have significant effects on the performance of the devices. Under the optimal structure and doping, the Schottky barrier solar cells, if can be fabricated with suitable techniques, can have a conversion efficiency up to 18.5%, comparable to MO heterojunction solar cells, but at a much simpler structure and lower cost. Some guidelines about the materials selection and structure design for MO Schottky barrier solar cells are summarized.  相似文献   

17.
周文辉  周艳丽  郭洁  李梅  武四新 《化学研究》2012,23(5):70-73,79
以金属氯化物为金属源,硫脲为硫源,聚乙二醇和乙二醇为混合溶剂,采用溶剂热法一步合成了花状的铜锌锡硫纳米颗粒.利用X射线衍射仪,扫描电子显微镜、能谱仪、透射电子显微镜、紫外-可见分光光度计分析了铜锌锡硫纳米颗粒的物相、结构、形貌及光学性能,并初步探讨了铜锌锡硫的生长机理.结果表明,所得到的铜锌锡硫纳米颗粒具有锌黄锡矿结构,直径在500~2 000nm范围内可调,其中花状的铜锌锡硫纳米颗粒由大量厚度约25nm的纳米片构成.所制备的铜锌锡硫纳米颗粒对可见光具有明显的吸收;利用外延法推算得到其禁带宽度约为1.5eV,与太阳能电池所需的最佳禁带宽度相近,显示其有望在新一代太阳能电池中得到应用和推广.  相似文献   

18.
A novel C60 solar cell acceptor (BTOQC, benzo[2,1,3]-thiadiazole-o-quinodimethane-C60 bisadducts) based on benzo[2,1,3]thiadiazole has been synthesized as model to study how the thiadiazole group will affect the device performance in bulk heterojunction organic photovoltaics (BHJ-OPV) with poly(3-hexylthiophene) (P3HT) as donor. The optoelectronic, electrochemistry, and photovoltaic properties of the novel bisadduct BTOQC have been fully investigated. The best device performance of this fullerene derivative in our research was obtained as 2.50% with a high Voc of 0.74 V.  相似文献   

19.
This work is concerned with the investigation of Capacitance-Voltage (CV) behavior of n-channel Si/SiGe MODFET varactors. This investigation provides a valuable insight into the high frequency response of the device under test and its dependence on design parameters; especially regarding the modulation layer doping concentration. The heterostructure under consideration is much more complicated than conventional MOS varactor with respect to non-uniform doping, energy band offsets and the pn-junction in series. Subsequently, CV characterization has never been applied to such MODFET varactor structure. Experimental CV measurements have shown a non-monotonic behavior with a transition point minimum and higher saturation levels on both sides, in contradiction to the conventional high frequency MOS characteristics. This behavior was confirmed qualitatively using simulations. Moreover, we explain some fundamental capacitance properties of the structure, which provide already very interesting perceptions of the MODFET varactor operation, modeling and possible applications using the obtained stimulating results.  相似文献   

20.
Organic electronics are broadly anticipated to impact the development of flexible thin-film device technologies. Among these, solution-processable π-conjugated polymers and small molecules are proving particularly promising in field-effect transistors and bulk heterojunction solar cells. This Perspective analyzes some of the most exciting strategies recently suggested in the design and structural organization of π-functional materials for transistor and solar cell applications. Emphasis is placed on the interplay between molecular structure, self-assembling properties, nanoscale and mesoscale ordering, and device efficiency parameters. A critical look at the various approaches used to optimize both materials and device performance is provided to assist in the identification of new directions and further advances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号