首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
《Chemical physics letters》1986,127(4):381-386
A variety of applications exist for reverse saturable absorbers (RSAs) in laser science (RSAs are substances whose excited-state absorption cross section is larger than their ground-state absorption cross section at a given wavelength and possess a number of other properties). We propose an approach to designing RSAs at a desired wavelength by construction of dimers of dye molecules which absorb near the wavelength of interest. The dimer ground-state absorption is to a state in which the excitation is spread over both monomeric units and the excited-state absorption commences from this state to the doubly excited electronic state in which both monomeric units are excited.  相似文献   

2.
酞菁铜分子的电子态和反饱和吸收   总被引:1,自引:0,他引:1  
用ROHF-INDO/SDCI方法结合实验研究了酞菁铜分子的电子的电子结构.紫外-可见光谱.激发态分子动态学和反饱和吸收的微观机制.对酞菁铜实现反饱和吸收的必要条件是最低四重态对激光的吸收截面必须大于基态对激光的吸收截面. 在波长为532nm的激光作用下.该条件得到了满足,故Cupc呈现反饱和吸收特征.理论分析与实验结果一致.  相似文献   

3.
Several important photophysical properties of the cyanine dye Cy3 have been determined by laser flash photolysis. The triplet-state absorption and photoisomerization of Cy3 are distinguished by using the heavy-atom effects and oxygen-induced triplet --> triplet energy transfer. Furthermore, the triplet-state extinction coefficient and quantum yield of Cy3 are also measured via triplet-triplet energy-transfer method and comparative actinometry, respectively. It is found that the triplet --> triplet (T1-->Tn) absorptions of trans-Cy3 largely overlap the ground-state absorption of cis-Cy3. Unlike what occurred in Cy5, we have not observed the triplet-state T1-->Tn absorption of cis-Cy3 and the phosphorescence from triplet state of cis-Cy3 following a singlet excitation (S0-S1) of trans-Cy3, indicating the absence of a lowest cis-triplet state as an isomerization intermediate upon excitation in Cy3. The detailed spectra of Cy3 reported in this paper could help us interpret the complicated photophysics of cyanine dyes.  相似文献   

4.
The photophysical properties, such as the UV-vis absorption spectra, triplet transient difference absorption spectra, triplet excited-state extinction coefficients, quantum yields of the triplet excited state, and lifetimes of the triplet excited state, of 10 novel zinc phthalocyanine derivatives with mono- or tetraperipheral substituents have been systematically investigated in DMSO solution. All these complexes exhibit a wide optical window in the visible spectral range and display long triplet excited-state lifetimes (140-240 mus). It has been found that the complexes with tetrasubstituents at the alpha-positions exhibit a bathochromic shift in their UV-vis absorption spectra, fluorescence spectra, and triplet transient difference absorption spectra and have larger triplet excited-state absorption coefficients. The nonlinear absorption of these complexes has been investigated using the Z-scan technique. It is revealed that all complexes exhibit a strong reverse saturable absorption at 532 nm for nanosecond and picosecond laser pulses. The excited-state absorption cross sections were determined through a theoretical fitting of the experimental data using a five-band model. The complexes with tetrasubstituents at the alpha-positions exhibit larger ratios of triplet excited-state absorption to ground-state absorption cross sections (sigma T/sigma g) than the other complexes. In addition, the wavelength-dependent nonlinear absorption of these complexes was studied in the range of 470-550 nm with picosecond laser pulses. All complexes exhibit reverse saturable absorption in a broad visible spectral range for picosecond laser pulses. Finally, the nonlinear transmission behavior of these complexes for nanosecond laser pulses was demonstrated at 532 nm. All complexes, and especially the four alpha-tetrasubstituted complexes, exhibit stronger reverse saturable absorption than unsubstituted zinc phthalocyanines due to the larger ratio of their excited-state absorption cross sections to their respective ground-state absorption cross sections.  相似文献   

5.
In this work, we investigate the nonlinear absorption dynamics of Zn phthalocyanine in dimethyl sulfoxide (DMSO). We used single pulse and pulse train Z-scan techniques to determine the dynamics and absorption cross-sections of singlet and triplet states at 532 nm. The excited singlet state absorption cross-section was determined to be 3.2 times higher than the ground state one, giving rise to reverse saturable absorption. We also observed that reverse saturable absorption occurs from the triplet state, after its population by intersystem crossing, whose characteristic time was determined to be 8.9 ns. The triplet state absorption cross-section determined is 2.6 times higher than the ground state one. In addition, we used the white light continuum Z-scan to evaluate the singlet excited state spectrum from 450 to 710 nm. The results show two well-defined regions, one above 600 nm, where reverse saturable absorption is predominant. Below 600 nm, we detected a strong saturable absorption. A three-energy-level diagram was used to explain the experimental results, leading to the excited state absorption cross-section determination from 450 nm up to 710 nm.  相似文献   

6.
Monomers and aggregates of Merocyanine 540 (MC540) in water are able to photoisomerize. The shape of the photoisomer absorption spectrum is very similar to that of the ground state. Triplet state of MC540 in water has been produced by energy transfer from triplet anthracene and displays a broad absorption spectrum between 600 and 700 nm. The triplet state may also be produced by direct excitation of MC540 with UV light. However, when the dye is excited by visible light, no triplet state absorbance in the red could be detected so that the triplet yield of MC540 in water seems to be excitation wavelength dependent.  相似文献   

7.
The multiphoton absorption properties of the axially substituted tetrapyrazinotetraazaporphyrinato complex Pyz(4)TAPInCl (1) are reported and interpreted. In particular, the nonlinear optical transmission of the complex and the excited states involved in the nonlinear absorption have been determined at the frequency of the second harmonic generation of a Nd:YAG laser in the nanosecond time regime. Pyz(4)TAPInCl has an excited-state absorption cross section larger than its ground state in the 460-540 nm spectral region, and it shows an optical limiting (OL) behavior at 532 nm, which derives from a sequential two-photon absorption with a larger absorption cross section of the excited triplet state with respect to the ground state. It results that the absorption cross section of 1 in the excited triplet state is 7.8 x 10(-18) cm(2) vs 0.9 x 10(-18) cm(2) of the ground state at the wavelength of OL analysis.  相似文献   

8.
反饱和吸收是指介质的吸收系数随输入光强的增加而增大的一种现象。反饱和吸收材料在全光开关、光计算与通信以及光限幅和光稳幅等光电子领域中都有着广泛的应用前景。酞菁类化合物以其较大的非共振三阶极化率、内在的快速响应和良好的化学和热稳定性倍受关注。目前所研究的反饱和吸收材料多是溶液和薄膜样品,在实用化方面存在较大困难,并且一些反饱和吸收性能好的酞菁化合物在溶剂中易于分解,给薄膜制备和溶液的稳定带来了困难。本文采用注射成型方法将酞菁铟掺杂到聚甲基丙烯酸甲酯(PMMA)中,研究了样品的反饱和吸收性能,国内外鲜见相关报道。  相似文献   

9.
Global three dimensional potential energy surfaces and transition dipole moment functions are calculated for the lowest singlet and triplet states of carbonyl sulfide at the multireference configuration interaction level of theory. The first ultraviolet absorption band is then studied by means of quantum mechanical wave packet propagation. Excitation of the repulsive 2?(1)A(') state gives the main contribution to the cross section. Excitation of the repulsive 1?(1)A(") state is about a factor of 20 weaker at the absorption peak (E(ph) ≈ 45?000?cm(-1)) but becomes comparable to the 2?(1)A(') state absorption with decreasing energy (35?000?cm(-1)) and eventually exceeds it. Direct excitation of the repulsive triplet states is negligible except at photon energies E(ph) < 38?000?cm(-1). The main structure observed in the cross section is caused by excitation of the bound 2?(3)A(") state, which is nearly degenerate with the 2?(1)A(') state in the Franck-Condon region. The structure observed in the low energy tail of the spectrum is caused by excitation of quasi-bound bending vibrational states of the 2?(1)A(') and 1?(1)A(") electronic states. The absorption cross sections agree well with experimental data and the temperature dependence of the cross section is well reproduced.  相似文献   

10.
A cyclometalated platinum(II) 4,6-diphenyl-2,2'-bipyridyl pentynyl complex (1) has been synthesized and structurally characterized. Its photophysical and third-order nonlinear optical properties have been systematically investigated. This complex exhibits a metal-to-ligand charge-transfer (1MLCT) absorption band between 400 and 500 nm and a 3MLCT emission band at approximately 591 nm at room temperature with a lifetime of approximately 100 ns. At 77 K, the emission band blue shifts. Both UV-vis absorption and emission spectra show solvent dependence. Low-polarity solvents cause a bathochromic shift of the absorption and emission bands. This complex also exhibits a broad and strong transient absorption from the near-UV to the near-IR spectral region, with a triplet absorption coefficient of 4933 L mol(-1) cm(-1) at 585 nm and a quantum yield of 0.51 for the formation of the triplet excited state. Nonlinear transmission and Z-scan techniques were employed to characterize the third-order nonlinearities of this complex. A strong and broadband reverse saturable absorption was observed for nanosecond and picosecond laser pulses due to the reduced ground-state absorption in the visible spectral range. It also exhibits a self-defocusing effect at 532 nm for nanosecond laser pulses. The excited-state absorption cross section deduced from the open-aperture Z-scan increases at longer wavelengths, with an exceptionally large ratio of excited-state absorption to ground-state absorption of 160 at 570 nm for picosecond laser pulses.  相似文献   

11.
Three axially substituted complexes, 2,3-octa(3,5-di-tert-butylphenoxy)-2,3-naphthalocyaninato indium chloride (1a), 2,3-octa(3,5-di-tert-butylphenoxy)-2,3-naphthalocyaninato indium bromide (1b), and 2,3-octa(3,5-di-tert-butylphenoxy)-2,3-naphthalocyaninato indium iodide (1c) have been synthesized and their photophysical properties have been investigated. Optical power limiting of nanosecond (ns) and picosecond (ps) laser pulses at 532 nm using these complexes has been demonstrated. All complexes display strong Q(0,0) absorption and measurable emission in the near-infrared region and exhibit strong excited-state absorption in the range of 470-700 nm upon ns laser excitation. The different axial ligands show negligible effect on the linear absorption, emission, and transient difference absorption spectra. However, the excited-state lifetime, triplet excited-state quantum yield, and efficiency to generate singlet oxygen are affected significantly by the heavier axial ligand. Brominated and iodinated complexes 1b and 1c show higher triplet excited-state quantum yield, while chlorinated complex 1a has longer excited-state lifetime and is more efficient in generating singlet oxygen. The iodinated complex 1c displayed the best optical limiting due to the higher ratio of excited-state absorption cross section to ground state absorption cross section (sigma(eff)/sigma(0)).  相似文献   

12.
Vibrational spectra of the lowest energy triplet states of thymine and its 2′-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs to 3 μs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and 1700 cm−1 in room-temperature acetonitrile-d3 solution. These bands and additional ones observed between 1300 and 1450 cm−1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4O carbonyl exhibits substantial single-bond character, explaining the large (70 cm−1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ* state as the triplet precursor.  相似文献   

13.
《Chemical physics》2001,263(2-3):471-490
The triplet saturable absorption behaviour of the xanthene dyes eosin Y, erythrosin B, and rose bengal and of the fullerene molecule C70 is studied. The molecules are excited to the S1-state by intense picosecond pulses (wavelength λP=527 nm). They relax dominantly to the triplet system by intersystem crossing. The triplet–triplet saturable absorption is investigated with time-delayed intense picosecond pulses (wavelength λL=1054 nm) in the transparency region of the molecules in the singlet ground state. Higher excited-state triplet absorption cross-sections and higher excited-state triplet relaxation times are determined by numerical simulation of the experimental results. Time-resolved fluorescence measurements reveal higher excited-state triplet to singlet back-intersystem-crossing and multi-step triplet photoionization. Additionally the two-photon absorption cross-sections at λL=1054 nm are determined by measurement of the fundamental pulse two-photon induced fluorescence relative to the second-harmonic pulse single-photon induced fluorescence.  相似文献   

14.
We compared detailed dynamics of the excited-state absorption for C60 in solution, thin films, and entrapped in an inorganic sol-gel glass matrix. Our results demonstrate that the microscopic morphology of the C60 molecules plays a crucial role in determining the relaxation dynamics. This is a key factor for applications in optical limiting for nanosecond pulses using reverse saturable absorption. We find that the dynamics of our C60-glass composites occur on long (ns) timescales, comparable to those in solution; thin film samples, by contrast, show rapid decay (<20 picoseconds). These results demonstrate that C60-sol-gel glass composites contain C60 in a molecular dispersion, and are suitable candidates for solid-state optical limiting. Multispectral analysis of the decay dynamics in solution allows accurate determination of both the intersystem crossing time (600±100ps) and the relative strengths of the singlet and triplet excited-state cross sections as a function of wavelength from 450–950 nm. The triplet excited-state cross section is greater than that for the singlet excited-state over the range from 620–810 nm.  相似文献   

15.
The effect of the number of bromide substituents on the photophysical and nonlinear optical properties of the tetrabrominated naphthalocyanine Br4(tBu2PhO)4NcSi[OSi(Hex)3]2 (1) and the octabrominated naphthalocyanine Br8NcSi[OSi(Hex)3]2 (2) has been investigated through various spectroscopic techniques. Absorption and emission of 1 and 2 have been studied at room temperature and 77 K to determine the spectral properties of the ground and the excited states and the lifetimes and quantum yields of formation of the excited states. There is a moderate increase of the quantum yield of the triplet excited-state formation (PhiT = 0.10 vs 0.13) and a decrease of the triplet excited-state lifetime (tauT approximately 70 vs 50 mus) from 1 to 2. These can be attributed to the stronger heavy atom effect produced by the larger number of peripheral bromide substituents in 2 considering that an excited state with a triplet manifold is involved in the excitation dynamics of both complexes 1 and 2. The quantum yields of the singlet oxygen formation (PhiDelta) upon irradiation of 1 and 2 at 355 nm were also evaluated, and a value of PhiDelta(1) = PhiDelta(2) = 0.16 was obtained. In addition to that, octabrominated complex 2 displays a larger decrease of nonlinear optical transmission for nanosecond pulses at 532 nm with respect to the tetrabrominated complex 1. The nanosecond Z-scan experiments reveal that 1 and 2 exhibit both a reverse saturable absorption and a nonlinear refraction at 532 nm. However, both the sign and the magnitude of the nonlinear refraction change from 1 to 2. For picosecond Z-scan in the visible spectral region, these two complexes exhibit only reverse saturable absorption, and the excited-state absorption cross-section increases at longer wavelengths.  相似文献   

16.
The role of triplet states in the UV photodissociation of N(2)O is investigated by means of quantum mechanical wave packet calculations. Global potential energy surfaces are calculated for the lowest two (3)A' and the lowest two (3)A' states at the multi-reference configuration interaction level of electronic structure theory using the augmented valence quadruple zeta atomic basis set. Because of extremely small transition dipole moments with the ground electronic state, excitation of the triplet states has only a marginal effect on the far red tail of the absorption cross section. The calculations do not show any hint of an increased absorption around 280 nm as claimed by early experimental studies. The peak observed in several electron energy loss spectra at 5.4 eV is unambiguously attributed to the lowest triplet state 1(3)A'. Excitation of the 2(1)A' state and subsequent transition to the repulsive branch of the 2(3)A' state at intermediate NN-O separations, promoted by spin-orbit coupling, is identified as the main pathway to the N(2)((1)Σ(g)(+))+O((3)P) triplet channel. The yield, determined in two-state wave packet calculations employing calculated spin-orbit matrix elements, is 0.002 as compared to 0.005 ± 0.002 measured by Nishida et al. [J. Phys. Chem. A 108, 2451 (2004)].  相似文献   

17.
The photophysical properties of a series of 4,6-diphenyl-2,2'-bipyridyl platinum(II) complexes bearing different σ-alkynyl ancillary ligands (1a-1k) were systematically investigated. All complexes exhibit strong (1)π,π* absorption bands in the UV region; and broad, structureless charge-transfer band(s) in the visible region, which systematically red-shift(s) when the electron-donating ability of the para substituent on the phenylacetylide ligand increases. All complexes are emissive in solution at room temperature. When excited at the charge-transfer absorption band, the complexes exhibit long-lived orange emission (λ(max): 555-601 nm), which is attributed to a triplet metal-to-ligand charge transfer/intraligand charge transfer emission ((3)MLCT/(3)ILCT). Most of these complexes exhibit broad triplet transient difference absorption in the visible to the near-IR region, with a lifetime comparable to those measured from the decay of the (3)MLCT/(3)ILCT emission. The reverse saturable absorption (RSA) of these complexes were demonstrated at 532 nm using nanosecond laser pulses. The degree of RSA follows this trend: 1k ≈ 1a > 1c > 1f ≈ 1i > 1h ≈ 1b > 1e > 1d > 1g, which is mainly determined by the ratio of the triplet excited-state absorption cross section to that of the ground-state and the triplet excited-state quantum yield.  相似文献   

18.
The absolute absorption cross section and photodissociation quantum yield of NO2 were determined over the wavelength region 375 to 420 nm at a temperature of 296 K. The quantum yield measurements were made at 1 nm intervals over this frequency range with an accuracy of ± 7%. The data show a significant decrease in the quantum yield between 380 and 390 nm indicating the possibility of a non-dissociating NO2 excited state in this region.  相似文献   

19.
The triplet-state characteristics of the Cy5 molecule related to trans-cis isomerization are investigated by means of ensemble and single molecule measurements. Cy5 has been used frequently in the past 10 years in single molecule spectroscopic applications, e.g., as a probe or fluorescence resonance energy transfer acceptor in large biomolecules. However, the unknown spectral properties of the triplet state and the lack of knowledge on the photoisomerization do not allow us to interpret precisely the unexpected single molecule behaviors. This limits the application of Cy5. The laser photolysis experiments demonstrate that the trans triplet state of Cy5 absorbs about 625 nm, the cis ground state absorbs about 690 nm, and the cis triplet state also absorbs about 690 nm. In other words, the T1-Tn absorptions largely overlap the ground-state absorptions for both trans and cis isomers, respectively. Furthermore, the observation of the cis triplet state indicates an important isomerization pathway from the trans-S1 state to the cis-T1 state upon excitation. The detailed spectra presented in this article let us clearly interpret the exact mechanisms responsible for several important and unexpected photophysical behaviors of single Cy5 molecules such as reverse intersystem crossing (RISC), the observation of dim states with a lower emission intensity and slightly red-shifted fluorescence, and unusual energy transfer from donor molecules to dark Cy5 molecules acting as acceptors in single molecule fluorescence resonance energy transfer (FRET) measurements. Spectral results show that the dim state in the single molecule fluorescence intensity time traces originated from cis-Cy5 because of a lower excitation rate, resulting from the red-shifted ground-state absorption of cis-Cy5 compared to that of the trans-Cy5.  相似文献   

20.
Bacteriochlorin a (BCA) is a potential photosensitizer for photodynamic therapy of cancer. It has been shown previously that the photoefficiency of the dye is mainly dependent on singlet oxygen (1O2) generation. Nanosecond laser flash photolysis was used to produce and to investigate the excited triplet state of the dye in methanol, phosphate buffer and dimiristoyl-L-alpha-phosphatidylcholine (DMPC) liposomes. The transients were characterized in terms of their absorption spectra, decay kinetics, molar absorption coefficients and formation quantum yield of singlet-triplet intercrossing. The lifetime of the BCA triplet state was measured at room temperature. The triplet-state quantum yield is quite high in methanol (0.7) and in DMPC (0.4) but only 0.095 in phosphate buffer. In the last case, BCA is in a monomer-dimer equilibrium, and the low value of the quantum yield observed was ascribed to the fact the triplet state is only formed by the monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号