首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
以商品活性炭(AC)为正极, 预锂化中间相碳微球(LMCMBs)为负极, 组装成锂离子电容器(LICs). 用X射线衍射(XRD)对LMCMB 电极材料的晶体结构进行了表征和分析, 预锂化量(PIC)小于200 mAh·g-1 时,LMCMB电极材料基本保持了原始的石墨晶体结构. 利用三电极装置, 测试了充放电过程中LICs 的正、负极及整电容器的电压变化曲线. 以LMCMB为电极, 锂离子电容器负极的工作电压变低, 并且电压曲线更加平坦, 同时正极也可以利用到更低的电压区间. 对比锂离子电容器MCMB/AC, LMCMB/AC在比能量密度、循环性能和库仑效率电化学性能方面都得到了改善. 在电压区间2.0-3.8 V 下, 100 次循环后, 放电比容量的保持率从74.8%增加到100%, 库仑效率从95%增加到100%. LMCMB/AC电容器容量不衰退的直接原因是由于AC正极极化变小. 在2.0-3.8 V和1.5-3.8 V电压区间内, LMCMB/AC锂离子电容器的比能量密度分别可达85.6和97.9 Wh·kg-1.  相似文献   

2.
将石墨涂覆于传统铜箔(CCC)与穿孔铜箔(PCC)集流体表面,通过内部短路的方式进行预嵌锂处理,再以商业化的活性炭及预锂化的石墨分别为正、负极材料组装成锂离子电容器(LIC)。以PCC为集流体的LIC在0.1和2.0 A?g~(-1)的电流密度下,能量密度分别为118.2和51.7 Wh?kg~(-1),并且在0.5 A?g~(-1)的电流密度下循环1000次后的能量密度保持率为90%;以CCC为集流体的LIC在0.1和2.0 A?g~(-1)的电流密度下的能量密度分别为125.5和43.3 Wh?kg~(-1),在同等电流密度下2.0-3.8 V之间循环1000次后的能量密度保持率仅为73.2%。进一步研究表明,石墨采用PCC在预嵌锂的过程中避免了金属锂沉积,生成了均一且稳定的固体电解质膜(SEI),有效防止充放电过程中SEI膨胀,活性物质与集流体间粘结力降低,活性物质脱落等现象发生。因此,LIC通过PCC完成预嵌锂后的自放电及内阻更小,具有更佳的倍率性能和循环性能。  相似文献   

3.
The terrible shuttling of lithium polysulfides (LiPSs) is a major obstacle for commercializing lithium–sulfur (Li–S) batteries as high-performance energy storage systems. In this study, a carbon-based interlayer with effective suppression capability on the shuttle effect is developed by simply coating a well-dispersed mixture of soybean protein isolate/MXene onto the acidified carbon paper (ACP). The resultant composite interlayer (SM@ACP) is able to synergistically diminish the shuttle effect through chemical adsorption and physical blocking. Meanwhile, this interlayer displays excellent conductivity and facilitates the diffusion of Li ions due to the composite coating to promote both electron/ion conduction as well as the porous structure of ACP. Benefiting from the unique properties of the composite interlayer, the as-assembled Li–S batteries with SM@ACP interlayers show a great improvement in the cycling stability and rate performance, delivering a very low-capacity decay rate of 0.071% per cycle at 0.5 C even after 800 cycles. This work provides a feasible route to realize rational design and commercial mass production of desirable interlayers for promoting the commercialization of Li–S batteries.  相似文献   

4.
采用溶胶凝胶法合成了Nasicon化合物Li3V2(PO4)3, 采用X射线衍射(XRD)对产品进行了物相分析. 采用充放电测试, 循环伏安(CV)研究了化合物的电化学性能和锂离子的脱嵌过程, 计算出Li在固相中的扩散系数(10-8 cm2•s-1); 采用交流阻抗测试(EIS)研究了Li3V2(PO4)3的电极过程; 对两种类型的阻抗图谱提出不同等效电路模型并对结果进行了拟合; 研究了Li3V2(PO4)3电极过程动力学以及新鲜电极界面在充放电过程中的变化特性.  相似文献   

5.
Numerous carbonaceous materials have been studied as anodes of lithium ion batteries during the past several years[1 ̄4].Graphite was favored for battery applications because it exhibits a high specific capac- ity, low working potential close to that of l…  相似文献   

6.
合成并考察了N-甲基-N-乙(丙,丁)基哌啶-二( 三氟甲基磺酰) 亚胺三种离子液体( PP12(3,4)TFSI )作为电解液添加剂的影响. 使用热分析和电化学技术研究了离子液体混合电解液的热稳定性和电化学性能.实验表明,哌啶型离子液体可以提高有机电解液的热稳定性,并且侧链的长短对 LiCoO2 电极的电化学性能有重要的影响.当以PP13TFSI配成的混合电解液,在3.0~4.35 V之间、电流密度为150 mA•g-1时, LiCoO2 电极的首次放电容量为156.6 mAh•g-1,200周循环后容量为133.9mAh•g-1,容量保持率为85.5%,远远优于在传统有机电解液中的循环性能.  相似文献   

7.
Na~+对Li/改性石墨电池循环性能的影响研究   总被引:1,自引:0,他引:1  
分别用普通 4A和锂化 4A分子筛两种方法去除锂离子电池非水电解质体系 (EC/DEC/LiClO4 )中的微量水 ,引进不同浓度的Na+ 离子 .用原子吸收光谱法测定两种情况下体系中的Na+及Li+ 浓度 ;然后于室温下恒电流充放电 ,测定利用上述两种除水方法所得电解液配制的Li/石墨电池的循环性能 .结果表明 ,小电流下充放电 ,高Na+ 浓度能对锂离子电池循环性能构成严重破坏 ;随着电流的增大 ,电池对Na+ 的敏感性降低 .根据对循环后的电极片进行电子扫描实验结果 ,提出了Na+ 对锂离子电池循环性能影响机理的电化学解释 .  相似文献   

8.
As an important component in electrodes, the choice of an appropriate binder is significant when fabricating lithium-ion batteries (LIBs) with good cycle stability and rate capability, which are used in numerous applications, especially portable electronics and eco-friendly electric vehicles (EVs). Semi-crystalline poly(vinylidene fluoride) (PVDF), which is a traditional and widely used binder, cannot efficiently accommodate the volume changes observed in the anode during the charge-discharge process while binding all the components in the electrode together, which results in increased internal cell resistance, detachment of the electrode components, and capacity fading. Herein, we have investigated a highly polar and elastomeric polyacrylonitrile-butadiene (NBR) rubber for use as a binder in LIBs, which can accommodate graphite particles of different shapes compared to semi-crystalline PVDF. Prior to our electrochemical tests, NBR was analyzed using thermogravimetric analysis (TGA) and X-ray diffraction (XRD), showing good thermal stability and an amorphous morphology. NBR is more conformable to irregular surfaces, which results in the formation of a homogeneous passivation layer on both spherical and flaky graphite particles to effectively suppress any electrolyte side reactions, further allowing more uniform and fast Li ion diffusion at the electrolyte/electrolyte interface. As a result, the electrochemical performance of both spherical and flaky shape graphite electrodes was significantly improved in terms of their first cycle Coulombic efficiency (CE) and cycle stability. With comparative specific capacity, the first cycle CE of the NBR-based spherical and flaky graphite electrodes were 87.0% and 85.5%, compared to 85.3% and 82.6% observed for their corresponding PVDF-based electrodes, respectively. After 1000 discharge-charge cycles at 1C, the capacity retention of the NBR-based graphite electrodes was significantly higher than that of PVDF-based electrodes. This was attributed to the good stability of the solid electrolyte interphase (SEI) formed on the graphite electrodes and the high stretching ability of the elastomeric NBR binder, which help to accommodate the repeated volume fluctuation of graphite observed during long-term charge-discharge cycling. Electrochemical impedance spectroscopy (EIS) and microscopic analysis (SEM and TEM) were carried out to investigate the formation and evolution of the SEI layers formed on the spherical and flaky graphite electrodes. The results show that thin, homogeneous, and stable SEI layers are formed on the surface of both spherical and flaky graphite electrodes prepared using the NBR binder. When compared to the PVDF-based graphite electrodes, the graphite electrodes constructed using NBR showed decreased resistance in the SEI layer and faster charge transfer, thus enhancing the electrode kinetics for Li ion intercalation/deintercalation. Our study shows that the electrochemical performance of spherical and flaky graphite electrodes prepared using the NBR binder is significantly improved, demonstrating that NBR is a promising binder for these electrodes in LIBs.  相似文献   

9.
The activation characteristics and the effects of current densities on the formation of a separate LiCoO2 and graphite electrode were investigated and the behavior also was compared with that of the full LiCoO2/graphite batteries using various electrochemical techniques. The results showed that the formation current densities obviously influenced the electrochemical impedance spectrum of Li/graphite, LiCoO2/Li, and LiCoO2/graphite cells. The electrolyte was reduced on the surface of graphite anode between 2.5 and 3.6 V to form a preliminary solid electrolyte interphase (SEI) film of anode during the formation of the LiCoO2/graphite batteries. The electrolyte was oxidized from 3.95 V vs Li+/Li on the surface of LiCoO2 to form a SEI film of cathode. A highly conducting SEI film could be formed gradually on the surface of graphite anode, whereas the SEI film of LiCoO2 cathode had high resistance. The LiCoO2 cathode could be activated completely at the first cycle, while the activation of the graphite anode needed several cycles. The columbic efficiency of the first cycle increased, but that of the second decreased with the increase in the formation current of LiCoO2/graphite batteries. The formation current influenced the cycling performance of batteries, especially the high-temperature cycling performance. Therefore, the batteries should be activated with proper current densities to ensure an excellent formation of SEI film on the anode surface.  相似文献   

10.
SiOx/CoO and SiO/Li2CO3 composite materials were prepared by mechanical ball-milling. The structures of the obtained materials were characterized by X-ray diffraction (XRD). And scanning electron microscopes (SEM) of three samples after 20 cycles were also given. In addition, the electrochemical performances of three materials with galvanostatic charge-discharge cycling were investigated. The results show that the composite samples have larger initial reversible capacities and better cycle performance than pure SiO. Also,a schematic diagram showing the buffer effects of Li2CO3 addition and the mechanism of improving electrochemical performance by adding Li2CO3 are suggested.  相似文献   

11.
制备了一种新型含氟磺酰亚胺锂盐(三氟甲基磺酰)(三氟乙氧基磺酰)亚胺锂{Li[(CF3SO2)·(CF3CH2OSO2)N], Li[TFO-TFSI]}及其与碳酸乙烯酯(EC)/碳酸甲乙酯(EMC)混合溶剂(3∶7, 体积比)组成的非水电解液. 采用核磁共振波谱(NMR)、 红外光谱(IR)、 质谱(MS)、 元素分析(EA)和离子色谱(IC)等手段对合成锂盐Li[TFO-TFSI]进行了结构表征及纯度分析. 通过差示量热扫描(DSC)和热重分析(TG)对Li[TFO-TFSI]及其电解液1.0 mol/L Li[TFO-TFSI]-EC/EMC(3∶ 7)的热学性质进行了表征. 采用交流阻抗(EIS)、 循环伏安(CV)、 计时安培法及扫描电子显微镜(SEM)等对Li[TFO-TFSI]/碳酸酯电解液的基础物化和电化学性质进行了表征. 结果表明, Li[TFO-TFSI]/碳酸酯电解液具有较好的电化学稳定性; 在4.2 V(vs. Li/Li+)以下Al箔不发生腐蚀; 室温下基于Li[TFO-TFSI]/碳酸酯电解液的Li/人造石墨和人造石墨/LiCoO2电池均保持较好的循环性能, 特别是人造石墨/LiCoO2锂离子电池循环100周后, 其比容量保持率明显高于相应的基于LiPF6/碳酸酯电解液体系的电池.  相似文献   

12.
锂离子电池用多孔硅/石墨/碳复合负极材料的研究   总被引:2,自引:0,他引:2  
在两步高能球磨和酸蚀条件下制得了多孔硅/石墨复合材料,并对其进行碳包覆制成多孔硅/石墨/碳复合材料。通过TEM,SEM等测试手段研究了多孔硅材料的结构。作为锂离子电池负极材料,电化学测试结果表明多孔硅/石墨/碳复合材料相比纳米硅/石墨/碳复合材料有更好的循环稳定性。同时,改变复合体配比、热解碳前驱物、粘结剂种类和用量也会对材料的电化学性能产生较大的影响。其中使用质量分数为10%的LA132粘结剂的电极200次循环以后充电容量保持在649.9 mAh·g-1,几乎没有衰减。良好的电化学性能主要归因于主活性体-多孔硅颗粒中的纳米孔隙很好地抑制了嵌锂过程中自身的体积膨胀,而且亚微米石墨颗粒和碳的复合也减轻了电极材料的体积效应并改善了其导电性。  相似文献   

13.
采用液相法合成了Li2MnSiO4/C复合正极材料,并研究了不同焙烧温度对材料的结构、形貌和电化学性能的影响.利用热重(TG)分析了材料前驱体的热行为,确定了合成Li2MnSiO4/C复合正极材料的焙烧温度范围为600-800℃.X射线衍射(XRD)测试结果表明,不同温度下合成的样品材料均具有正交结构,且空间群为Pmn21,同时利用扫描电子显微镜(SEM)对所得样品材料的微观形貌及颗粒大小进行了表征.将所得Li2MnSiO4/C复合正极材料组装成扣式电池,并在不同的电流密度下进行充放电测试,结果表明:700℃合成的样品材料电化学性能最佳,具有较高的库仑效率及很好的循环稳定性.  相似文献   

14.
Li(4)V(3)O(8) materials have been prepared by chemical lithiation by Li(2)S of spherical Li(1.1)V(3)O(8) precursor materials obtained by a spray-drying technique. The over-lithiated vanadates were characterised physically by using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and electrochemically using galvanostatic charge-discharge and cyclic voltammetry measurements in both the half-cell (vs. Li metal) and full-cell (vs. graphite) systems. The Li(4)V(3)O(8) materials are stable in air for up to 5 h, with almost no capacity drop for the samples stored under air. However, prolonged exposure to air will severely change the composition of the Li(4)V(3)O(8) materials, resulting in both Li(1.1)V(3)O(8) and Li(2)CO(3). The electrochemical performance of these over-lithiated vanadates was found to be very sensitive to the conductive additive (carbon black) content in the cathode. When sufficient carbon black is added, the Li(4)V(3)O(8) cathode exhibits good cycling behaviour and excellent rate capabilities, matching those of the Li(1.1)V(3)O(8) precursor material, that is, retaining an average charge capacity of 205 mAh g(-1) at 2800 mA g(-1) (8C rate; 1C rate means full charge or discharge of a battery in one hour), when cycled in the potential range of 2.0-4.0 V versus Li metal. When applied in a non-optimised full cell system (vs. graphite), the Li(4)V(3)O(8) cathode showed promising cycling behaviour, retaining a charge capacity (Li(+) extraction) above 130 mAh g(-1) beyond 50 cycles, when cycled in the voltage range of 1.6-4.0 V, at a specific current of 117 mA g(-1) (C/3 rate).  相似文献   

15.
The effect of formation temperatures and current densities on the aging performance of LiNi1/3Co1/3Mn1/3O2/artificial graphite Li-ion cells during storage and cycle was investigated using three-electrode electrochemical impedance spectroscopy and charge–discharge experiment. The higher formation temperature at 45 °C decreased the resistance of solid electrolyte interphase (SEI) film and the irreversible capacity loss of Li-ion cells during SEI formation process. After Li-ion cell storage at 60 °C for 10 weeks, the ohmic resistance of the negative electrodes and the irreversible capacity loss of the cells reduced 24% and 7.9%, respectively, accompanied by a significant decrease of SEI film resistance when the formation temperature increased from 25 to 45 °C. The higher temperature at 45 °C may facilitate the transformation of metastable ROCO2Li to stable inorganics to form a stable SEI film. Three hundred cycling tests indicated that the capacity retention of the cell formation at 25 °C was only 87.5%, about 8% less than that of the cell formation at 45 °C. However, the SEI formation current density did not significantly affect the property of SEI film and the irreversible capacity loss of the aged cells.  相似文献   

16.
以聚乙烯吡咯烷酮/硝酸镧-乙酸钴-乙酸镍(PVP/LCN)为前驱体, 采用静电纺丝法, 经预氧化、碳化, 制得双钙钛矿La2CoNiO6无机纳米纤维超级电容器电极材料. 利用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)对其形貌和结构进行表征. 结果表明, 纤维由菱形结构的La2CoNiO6纳米颗粒相互连接而成, 呈链状空间网状结构. 循环伏安(CV)、恒流充放电(CP)和循环寿命测试表明, La2CoNiO6纳米纤维电极材料在三电极体系中, 电流密度为0.25 A·g-1时, 比电容值达335.0 F·g-1; 在对称型双电极体系中, 电流密度为0.25 A·g-1时, 比电容值可达到129.1 F·g-1,表现出良好的电容性能.  相似文献   

17.
Chemically activated graphene ('activated microwave expanded graphite oxide', a-MEGO) was used as a cathode material for Li-ion hybrid supercapacitors. The performance of a-MEGO was first verified with Li-ion electrolyte in a symmetrical supercapacitor cell. Hybrid supercapacitors were then constructed with a-MEGO as the cathode and with either graphite or Li(4)Ti(5)O(12) (LTO) for the anode materials. The results show that the activated graphene material works well in a symmetrical cell with the Li-ion electrolyte with specific capacitances as high as 182 F g(-1). In a full a-MEGO/graphite hybrid cell, specific capacitances as high as 266 F g(-1) for the active materials at operating potentials of 4 V yielded gravimetric energy densities for a packaged cell of 53.2 W h kg(-1).  相似文献   

18.
微波合成法制备锂离子电池正极材料Li2FeSiO4   总被引:4,自引:0,他引:4  
研究了一种制备锂离子电池正极材料Li2FeSiO4的新方法.采用机械球磨结合微波热处理合成了Li2FeSiO4正极材料.通过XRD、SEM和恒流充放电测试,对样品结构、形貌和电化学性能进行了表征和分析.与传统固相法合成的材料在晶体结构、微观形貌以及充放电性能方面进行了比较.结果表明,微波合成法可以快速制备具有正交结构的Li2FeSiO4材料;在650 ℃时处理12 min,获得了纯度高、晶粒细小均匀的产物,该产物具有较高的放电比容量和良好的循环性能.在60℃下以C/20倍率(电流密度,1C=160mA·g-1)进行充放电,首次放电容量为119.5 mAh·g-1,10次循环后放电容量为116.2 mAh·g-1.与传统高温固相法相比,微波合成法制备的材料具有较高的纯度、均匀的形貌和较好的电化学性能.  相似文献   

19.
研究了一种制备锂离子电池正极材料Li2FeSiO4的新方法. 采用机械球磨结合微波热处理合成了Li2FeSiO4正极材料. 通过XRD、SEM和恒流充放电测试, 对样品结构、形貌和电化学性能进行了表征和分析. 与传统固相法合成的材料在晶体结构、微观形貌以及充放电性能方面进行了比较. 结果表明, 微波合成法可以快速制备具有正交结构的Li2FeSiO4材料; 在650 ℃时处理12 min, 获得了纯度高、晶粒细小均匀的产物, 该产物具有较高的放电比容量和良好的循环性能. 在60 ℃下以C/20倍率(电流密度, 1C=160 mA·g-1)进行充放电, 首次放电容量为119.5 mAh·g-1, 10次循环后放电容量为116.2 mAh·g-1. 与传统高温固相法相比, 微波合成法制备的材料具有较高的纯度、均匀的形貌和较好的电化学性能.  相似文献   

20.
以商业微米级锰酸锂(LiMn2O4)为正极,钛酸锂(Li4Ti5O12)为负极,分别与商业活性炭(AC)复合,组装成软包装电池电容样品并进行电化学测试。测试结果表明:当样品正负极均复合AC时,其电化学性能要优于只有正极复合AC和未复合AC的样品。其中,正负极活性炭复合比例为5 wt.%,负极与正极的理论容量比(N/P)为1.01时,电池电容样品拥有良好的倍率性能,且其在0.5 C时的放电比容量为56.4 mAh/g,5 C时的容量保持率为0.5 C的72.2%。此外,与未复合AC的样品相比,单体在5 C倍率下经2000次循环后的容量保持率仍有77.5%,远高于前者的30.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号