首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The products of bromo and chlorofluorination of E and Z-1,2-dichloroethylenes, 1, 3-dichloro-1-propenes, 1, 1-dichloro- ethylene and 1, 3-dichloro-2-fluoro-1-propene by N-bromosuccinimide and hexachloromelamine in anhydrous hydrogen fluoride have been studied. It was found that the reaction was in all cases 100% regio and 93–100% trans-stereospecific with the exception of E-1, 2-dichloro-ethylene, its trans-stereospecificity being 85%.Threo and erithro-1-bromo-1, 2-dichloro-2-fluoroethanes, 2-bromo-1, 3-dichloro-1-fluoropropanes and 1, 2, 3-trichloro-1-fluoro-propanes as well 1, 1, 2-trichloro-2-fluoroethane, 1-bromo-2, 2-dichloro-2-fluoroethane, 1, 2, 2-trichloro-2 fluoroethane, 1-bromo-1, 3-dichloro-2, 2-difluoropropane, and 1, 1, 3-trichloro-2,2-difluoropropane were obtained in 50–70% yield.The bromination of E and Z-1, 3-dichloro-1-propenes with molecular bromine in carbon tetrachloride in the dark is non-stereospecific and gives a mixture of erithro and threo-1, 2-dibromo-1, 3-dichloropropanes in the ratio about 1:1. However, the bromination reaction in anhydrous hydrogen fluoride solution proceeds with a high degree of stereospecificity (94–95%) and gives threo-1, 2-dibromo-1, 3-dichloropropane from Z and erithro-1, 2-dibromo-1, 3-dichloropropane from E-1, 3-dichloro-1-propene.The data obtained are considered in terms of an electrophilic mechanism of halogenoalkene halogenation in anhydrous hydrogen fluoride and a free-radical mechanism in carbon tetrachloride.  相似文献   

2.
The copolymerization of 3-methyl-1-butene (3M1B), 2-methyl-2-butene (2M2B), or 2-methyl-1-butene (2M1B) with trans-2-butene (2B) was attempted in the presence of a Ziegler-Natta catalyst. It was found the 3M1B underwent monomer-isomerization copolymerization with 2B to give a copolymer consisting of both 3M1B and 1-butene (1B) units, with an infrared (IR) spectrum in good agreement with that obtained from the copolymerization of 3M1B with 1B under similar conditions. When the apparent copolymerization parameters obtained by a TiCl3–(C2H5)3Al catalyst were compared, the apparent reactivity of 3M1B observed in the 3M1B-2B system was much higher than that in the 3M1B-1B system. However, 2M2B and 2M1B did not undergo monomer-isomerization copolymerization with 2B, and only the homopolymer of 1B was obtained under similar conditions.  相似文献   

3.
A series of complexes obtained from the reaction of trans-[(CH3NH2)2PtII] with unsubstituted cytosine (CH) and its anion (C), respectively, has been prepared and isolated or detected in solution: trans-[Pt(CH3NH2)2(CH-N3)Cl]Cl.H2O (1), trans-[Pt(CH3NH2)2(CH-N3)2](ClO4)2 (1a), trans-[Pt(CH3NH2)2(C-N3)2].2H2O (1b), trans-[Pt(CH3NH2)2(CH-N3)2](ClO4)(2).2DMSO (1c), trans-[Pt(CH3NH2)2(CH-N1)2] (NO3)(2).3H2O (2a), trans-[Pt(CH3NH2)2(C-N1)2].2H2O (2b), trans-[Pt(CH3NH2)2(CH-N1)(CH-N3)](ClO4)2 (3a), trans-[Pt(CH3NH2)2(C-N1)(C-N3)] (3b), and trans-[Pt(CH3NH2)2(N1-CN3)(N3-C-N1)Cu(OH)]ClO(4).1.2H2O (4). X-ray crystal structures of all these compounds, except 3a and 3b, are reported. Complex 2a is of particular interest in that it contains the rarer of the two 2-oxo-4-amino tautomer forms of cytosine, namely that with the N3 position protonated. Since the effect of PtII on the geometry of the nucleobase is minimal, bond lengths and angles of CH in 2a reflect, to a first approximation, those of the free rare tautomer. Compared to the preferred 2-oxo-4-amino tautomer (N1 site protonated) of CH, the rare tautomer in 2a differs particularly in internal ring angles (7-11 sigma). Formation of compounds containing the rare CH tautomers on a preparative scale can be achieved by a detour (reaction of PtII with the cytosine anion, followed by cytosine reprotonation) or by linkage isomerization (N3-->N1) under alkaline reaction conditions. Surprisingly, in water and over a wide pH range, N1 linkage isomers (3a, 2a) form in considerably higher amounts than can be expected on the basis of the tautomer equilibrium. This is particularly true for the pH range in which the cytosine is present as a neutral species and implies that complexation of the minor tautomer is considerably promoted. Deprotonation of the rare CH tautomers in 2a occurs with pKa values of 6.07 +/- 0.18 (1 sigma) and 7.09 +/- 0.11 (1 sigma). This value compares with pKa 9.06 +/- 0.09 (1 sigma) (average of both ligands) in 1a.  相似文献   

4.
The known aryne complex (PEt3)2Ni(eta2-C6H2-4,5-F2) (1a) reacts with a catalytic amount of Br2Ni(PEt3)2 over 1% Na/Hg to afford the dinuclear Ni(I) biarylyl complex [(PEt3)2Ni]2(mu-eta1:eta1-3,4-F2C6H2-3',4'-F2C6H2) (2a), which results from a combination of C-C bond formation and C-H bond rearrangement. The dinuclear benzyne [(PEt3)2Ni]2(mu-eta2:eta2-C6H2-4,5-F2) (3) was obtained by the reaction of 1a with a stoichiometric amount of Br2Ni(PEt3)2 over excess 1% Na/Hg, and 3 was found to catalyze the conversion of 1a to 2a. The reaction of 1a with B(C6F5)3 produced the trinuclear complex (PEt3)3Ni3(mu3:eta1:eta1:eta2-4,5-F2C6H2)(mu3:eta1:eta1:eta2-4,5-F2C6H2-4',5'-F2C6H2) (6). The addition of PEt3 to 6 produced 1 equiv of 1a and 1 equiv of [(PEt3)2Ni]2(mu-eta1:eta1-4,5-F2C6H2-4',5'-F2C6H2) (7a). Both 6 and 7a were identified as intermediates in the conversion of 1a to 2a. The analogue [(PEt3)(PMe3)Ni]2(mu-eta1:eta1-4,5-F2C6H2-4',5'-F2C6H2) (7b) was prepared by the addition of PMe3 to 6 and was structurally characterized. NMR spectroscopic evidence identified the additional asymmetric biarylyl [(PEt3)2Ni]2(mu-eta1:eta1-4,5-F2C6H2-3',4'-F2C6H2) (8a) during the conversion of 1a to 2a. The initial observation of 2 equiv of 8a for every equivalent of 2a produced from solutions of 7a suggests that 8a and 2a are formed from a common intermediate. A crossover labeling experiment shows that the C-H bond rearrangement steps in the conversion of 1a to 2a occur with the intermolecular scrambling of hydrogen and deuterium labels. The evidence collected suggests that Ni(I) complexes are capable of activating aromatic C-H bonds.  相似文献   

5.
An unprecedented, intramolecular metal-to-metal silyl ligand migration reaction has been discovered in a series of phosphido-bridged iron-platinum complexes and which may be triggered by an external nucleophile. Thus, reaction of solutions of [(OC)3-(R1/3Si)Fe(mu-PR2R3)Pt(1,5-COD) (1a R1 = OMe, R2 = 3 = Ph; 1b R1 = OMe, R2 = R3 = Cy; 1c R1 = Ph, R2 = R3 = Ph; 1d R1 = Ph, R2 = R3 = Cy; 1e R1 = Ph, R1 = H, R3 = Ph) in CH2Cl2 with CO rapidly afforded the corresponding complexes [(OC)4Fe(mu-PR2R3)Pt(SiR1/3)-(CO)] (2a-e) in which the silyl ligand has migrated from Fe to Pt, while two CO ligands have been ligated, one on each metal. When 1a or 1c was slowly treated with two equivalents of tBuNC at low temperature, quantitative displacement of the COD ligand was accompagnied by silyl migration from Fe to Pt and coordination of an isonitrile ligand to Fe and to Pt to give [(OC)3-(tBuNC)Fe(mu-PPh2)Pt[Si(OMe)3](CNtBu)] (3a) and [(OC)3(tBuNC)-Fe(mu-PPh2)Pt[SiPh3](CNtBu)] (3c). Reaction of 2a with one equivalent of tBuNC selectively led to substitution of the Pt-bound CO to give [(OC)4-Fe(mu-PCy2)Pt[Si(OMe)3](CNtBu)] (4b), which reacted with a second equivalent of tBuNC to give [(OC)4Fe(mu-PCy2)-Pt[Si(OMe)3](CNtBu)2] (5b) in which the metal-metal bond has been cleaved. Opening of the Fe-Pt bond was also observed upon reaction of 3a with tBuNC to give [(OC)3(tBuNC)-Fe(mu-PPh2)Pt[Si(OMe)3](CNtBu)2] (6). The silyl ligand migrates from Fe, in which it is trans to mu-PR2R3 in all the metal-metal-bonded complexes, to a position cis to the phosphido bridge on Pt. However, in 5a,b and 6 with no metal-metal bond, the Pt-bound silyl ligand is trans to the phosphido bridge. The intramolecular nature of the silyl migration, which may be formally viewed as a redox reaction, was established by a cross-over experiment consisting of the reaction of 1a and 1d with CO; this yielded exclusively 2a and 2d. The course of the silyl-migration reaction was found to depend a) on the steric properties of the -SiR1/3 ligand, and for a given mu-PR2R3 bridge (R2 = R3 = Ph), the migration rate decreases in the sequence Si(OMe)3> SiMe2Ph> SiMePh2>SiPh3; b) on the phosphido bridge and for a given silyl ligand (R1 = OMe), the migration rate decreases in the order mu-PPh2 > mu-PHCy; c) on the external nucleophile since reaction of 1c with two equivalents of P(OMe)3, P(OPh)3 or Ph2PCH2C(O)Ph led solely to displacement of the COD ligand with formation of 11a-c, respectively, whereas reaction with two equivalents of tBuNC gave the product of silyl migration 3c. Reaction of [(OC)3-[(MeO)3Si]Fe(mu-PPh2)Pt(PPh3)2] (7a) with tBuNC (even in slight excess) occurred stereoselectively with replacement of the PPh3 ligand trans to mu-PPh2, whereas reaction with CO led first to [(OC)3((MeO)3Si)Fe(mu-PPh2)Pt(CO)-(PPh3)] (8a), which then isomerized to the migration product [(OC)4Fe(mu-PPh2)Pt[Si(OMe)3](PPh3)] (9a). Most complexes were characterized by elemental analysis, IR and 1H, 31P, 13C, and 29Si NMR spectroscopy, and in five cases by X-ray diffraction.  相似文献   

6.
Cholest-5en-3β-ol 1 , 3,3-ethylenedioxy-androst-4-en-17β-ol 2 and 17,17-ethylenedioxy-1,3,5(10)-estratrien-3β-ol 3 were converted into ethyl ester 1a, 2a and 3a by reaction with ethyl chloroacetate in the presence of potassium. The ethyl esters 1a, 2a and 3a on reaction with hydrazine gave hydrazides 1b, 2b and 3b , which on reaction with cyanogen bromide afforded 1,3,4-oxadiazoles 1c, 2c and 3c .  相似文献   

7.
人工构筑了基于分枝氧化铝纳米通道的串/并联复合的纳流体二极管体系, 其具有可调的离子整流性能. 在这种两级分枝结构的1-2-2, 1-2-3, 1-3-2和1-3-3型氧化铝纳米通道中, 若将每一个分枝节点等效为一个二极管, 那么其一级分枝节点相当于串联的1个二极管, 二级分枝节点相当于并联的多个二极管. 因此1-2-2和1-2-3型纳米通道的电路图可等效为并联的2个二极管与第3个二极管相串联, 1-3-2和1-3-3型纳米通道的电路图可等效为并联的3个二极管与第4个二极管相串联. 但由于1-2-2和1-2-3型以及1-3-2和1-3-3型的二级分枝的结构和数目不同, 可将这4种纳米通道等效为不同的串/并联复合特性的纳流体二极管体系, 并且表现出依次增大的离子整流. 即分枝氧化铝纳米通道内部一级分枝和二级分枝的结构或数目共同调控的表面电荷非对称性可以改变其离子整流性能. 进一步地, 具有代表性的1-2-2型分枝纳米通道的整流率随分枝通道长度的增加而增加, 这表明分枝部分对整个串/并联复合纳流体二极管的整流特性起到决定性的作用. 相比于以前的单个离子二极管体系, 这种具有串/并联复合特性的多级分枝氧化铝纳米通道将为构筑更复杂的仿生纳流体二极管的研究提供有价值的借鉴.  相似文献   

8.
The extensive search for the global minimum structure of Hf3 at the B3LYP/LANL2DZ level of theory revealed that D3h 3A2' (1a1'(2)1a2'(2)1e'(4)2a1'(2)1e'2) and D3h 1A1' (1a1'(2)2a1'(2)1e'(4)1a2'(2)3a1'2) are the lowest triplet and singlet states, respectively, with the triplet state being the lowest one. However, at the CASSCF(10,14)/Stuttgart+2f1g level of theory these two states are degenerate, indicating that at the higher level of theory the singlet state could be in fact the global minimum structure. The triplet D3h 3A2' (1a1'21a2'(2)1e'(4)2a1'(2)1e'2) structure is doubly (sigma- and pi-) aromatic and the singlet D3h 1A1' (1a1'(2)2a1'(2)1e'(4)1a2'(2)3a1'2) structure is the first reported triply (sigma-, pi-, and delta-) aromatic system.  相似文献   

9.
A new family of dicopper(I) complexes [CuI2RL](X)2 (R=H, 1X, R=tBu, 2X and R=NO2, 3X, X=CF3SO3, ClO4, SbF6, or BArF, BArF=[B{3,5-(CF3)2C6H3}4]-), where RL is a Schiff-base ligand containing two tridentate binding sites linked by a xylyl spacer, has been prepared and characterized, and its reaction with O2 has been studied. The complexes were designed with the aim of reproducing structural aspects of the active site of type 3 dicopper proteins; they contain two three-coordinate copper sites and a rather flexible podand ligand backbone. The solid-state structures of 1ClO4, 2CF3SO3, 2ClO4, and 3BArF.CH3CN have been established by single-crystal X-ray diffraction analysis. 1ClO4 adopts a polymeric structure in the solid state while 2CF3SO3, 2ClO4, and 3BArF.CH3CN are monomeric. The complexes have been studied in solution by means of 1H and 19F NMR spectroscopy, which put forward the presence of dynamic processes. 1-3BArF and 1-3CF3SO3 in acetone react rapidly with O2 to generate metaestable [CuIII2(mu-O)2(RL)]2+ 1-3(O2) and [CuIII2(mu-O)2(CF3SO3)(RL)]+ 1-3(O2)(CF3SO3) species, respectively, that have been characterized by UV-vis spectroscopy and resonance Raman analysis. Instead, reaction of 1-3BArF with O2 in CH2Cl2 results in intermolecular O2 binding. DFT methods have been used to study the chemical identities and structural parameters of the O2 adducts, and the relative stability of the CuIII2(mu-O)2 form with respect to the CuII2(mu-eta2:eta2-O2) isomer. The reaction of 1X, X = CF3SO3 and BArF, with O2 in acetone has been studied by stopped-flow UV-vis exhibiting an unexpected very fast reaction rate (k=3.82(4)x10(3) M-1 s-1, DeltaH=4.9+/-0.5 kJ.mol-1, DeltaS=-148+/-5 J.K-1.mol-1), nearly 3 orders of magnitude faster than in the parent [CuI2(m-XYLMeAN)]2+. Thermal decomposition of 1-3(O2) does not result in aromatic hydroxylation. The mechanism and kinetics of O2 binding to 1X (X=CF3SO3 and BArF) are discussed and compared with those associated with selected examples of reported models of O2-processing copper proteins. A synergistic role of the copper ions in O2 binding and activation is clearly established from this analysis.  相似文献   

10.
Chiu TW  Liu YH  Chi KM  Wen YS  Lu KL 《Inorganic chemistry》2005,44(18):6425-6430
Three novel triosmium complexes with unusual coordination characteristics are reported. Treatment of the hydridotriosmium cluster (mu-H)2Os3(CO)10 with CNNPPh3 in CH2Cl2 gave complexes (mu-H)Os3(CO)(10)(mu2-eta2-C(H)NNPPh3) (1) and (mu-H)Os3(CO)10(mu2-eta1-CHPPh3) (2). Complex 1 represents the first example of the existence of a coordinated phosphinazine ligand. An in-situ 1H NMR study showed that the reaction of (mu-H)2Os3(CO)10 with CNNPPh3 produced complex 1 as the initial product in 100% conversion. The latter is not stable in solution and slowly eliminates nitrogen to form an unusual ylide complex 2 in quantitative yield. The thermolysis of 2 in refluxing toluene afforded (mu-H)3Os3(CO)9(mu3-eta1-CCO2CH2Ph) (3) as a colorless compound. Complexes 1-3 were characterized by spectroscopic methods and single-crystal X-ray diffraction analysis. The interesting feature of structure 3 is the presence of a mu3-alkylidyne ligand where the symmetrically triply bridged CCO2CH2Ph fragment lies perpendicular to and above the triosmium triangle.  相似文献   

11.
Several new pyridine derivatives were prepared via reaction of enaminoketones 1a , 1b , 1c , 1d with active hydrogen reagents. Reaction of the enaminoketones 1a , 1b , 1c with 4‐acetyl‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one 2a yielded the pyridines 3a , 3b , 3c . Condensation of the enaminonitrile 1d with compounds 2b , 2c , 2d and compound 8 gave the pyridine derivatives 6a , 6b , 6c and 10 respectively. Also, (3‐(dimethylamino)acryloyl)‐2H‐chromen‐2‐one 1a reacted with active methylenes in diethyl 3‐oxopentanedioate 12 and 4‐methyl‐6‐oxo‐2‐thioxo‐1,2,5,6‐tetrahydropyridine‐3‐carbonitrile 15 to afford the pyridine derivatives 14 and 16 respectively.  相似文献   

12.
The compound Fe[N(SiMe 3) 2] 2 is shown to be a useful precursor to dinuclear and trinuclear iron-sulfur-silylamido complexes by reaction with thiols or thiols and sulfur in tetrahydrofuran (THF) or toluene. Reaction with 1 equiv of p-tolylthiol affords [Fe 2(mu 2-S- p-tol) 2(N(SiMe 3) 2) 2(THF) 2] ( 1); with 0.5 equiv of adamantane-1-thiol, [Fe 2(mu 2-S-1-Ad)(mu 2-N(SiMe 3) 2)(N(SiMe 3) 2) 2] ( 2) is formed. The clusters [Fe 3(mu 3-Q)(mu 2-SR) 3(N(SiMe 3) 2) 3] are available by three methods: (i) self-assembly in the systems Fe[N(SiMe 3) 2] 2/RSH/S or Se [Q = S, R = p-tol ( 3) and 1-Ad ( 5)]; (ii) reaction of 1 with Q = S or Se to yield 3 or [Fe 3Se(S- p-tol) 3(N(SiMe 3) 2) 3] ( 4); (iii) reaction of 2 with 1-AdSH and S to give 5. Structures of 1- 5 are presented. Complexes 1 and 2 contain planar Fe 2S 2 and Fe 2SN rhombs. Clusters 3- 5 contain a mixed-valence Fe 3Q(SR) 3 core with trigonal (cuboidal) geometry. Of known iron-sulfur clusters, these most closely resemble previously reported [Fe 3S(S-R-S) 3] (2-) stabilized by bidentate thiolate ligands. Complexes 1- 5, together with a small set of recently described clusters of nuclearities 2, 4, and 8, constitute a new class of iron-sulfur-silylamido clusters. Complexes 3- 5 constitute a new structure type of mixed-valence iron-sulfur clusters.  相似文献   

13.
Shieh M  Miu CY  Huang KC  Lee CF  Chen BG 《Inorganic chemistry》2011,50(16):7735-7748
When trigonal-bipyramidal clusters, [PPN][E(2)Mn(3)(CO)(9)] (E = S, Se), were treated with Cr(CO)(6) and PPNCl in a molar ratio of 1:1:2 or 1:2:2 in 4 M KOH/MeCN/MeOH solutions, mono-Cr(CO)(5)-incorporated HE(2)Mn(3)-complexes [PPN](2)[HE(2)Mn(3)Cr(CO)(14)] (E = S, [PPN](2)[1a]; Se, [PPN](2)[1b]), respectively, were formed. X-ray crystallographic analysis showed that 1a and 1b were isostructural and each displayed an E(2)Mn(3) square-pyramidal core with one of the two basal E atoms externally coordinated with one Cr(CO)(5) group and one Mn-Mn bond bridged by one hydrogen atom. However, when the TMBA(+) salts for [E(2)Mn(3)(CO)(9)](-) were mixed with Cr(CO)(6) in a molar ratio of 1:1 in 4 M KOH/MeOH solutions and refluxed at 60 °C, mono-Cr(CO)(3)-incorporated E(2)Mn(3)Cr octahedral clusters [TMBA](3)[E(2)Mn(3)Cr(CO)(12)] (E = S, [TMBA](3)[2a]; Se, [TMBA](3)[2b]), respectively, were obtained. Clusters 2a and 2b were isostructural, and each consisted of an octahedral E(2)Mn(3)Cr core, in which each Mn-Mn or Mn-Cr bond of the Mn(3)Cr plane was semibridged by one carbonyl ligand. Clusters 1a and 1b (with [TMBA] salts) underwent metal core closure to form octahedral clusters 2a and 2b upon treatment with KOH/MeOH at 60 °C. In addition, 1a and 1b were found to undergo cluster expansion to form di-Cr(CO)(5)-incorporated HE(2)Mn(3)-clusters [HE(2)Mn(3)Cr(2)(CO)(19)](2-) (E = S, 3a; Se, 3b), respectively, upon the addition of 1 or 2 equiv of Cr(CO)(6) heated in refluxing CH(2)Cl(2). Clusters 3a and 3b were structurally related to clusters 1a and 1b, but with the other bare E atom (E = S, 3a; Se, 3b) further externally coordinated with one Cr(CO)(5) group. The nature, cluster transformation, and electrochemical properties of the mixed manganese-chromium carbonyl sulfides and selenides were systematically discussed in terms of the chalcogen elements, the introduced chromium carbonyl group, and the metal skeleton with the aid of molecular calculations at the BP86 level of the density functional theory.  相似文献   

14.
The tris(imido)methylrhenium complex CH3Re(NAd)3 (1a, Ad = 1-adamantyl) reacts with H2O to give CH3Re(NAd)2O (2a) and AdNH2. The resulting di(imido)oxo species can further react with another molecule of H2O to generate CH3Re(NAd)O2 (3a). The kinetics of these reactions have been studied by means of 1H NMR and UV-vis spectroscopies. The second-order rate constant for the reaction of 1a with H2O at 298 K in C6H6 is 3.3 L mol-1 s-1, which is much larger than the value 1 x 10(-4) L mol-1 s-1 obtained for the reaction between CH3Re(NAr)3 (1b, Ar = 2,6-diisopropylphenyl) and H2O in CH3CN at 313 K. Both 1a and 1b react with H2S to produce the rhenium(VII) sulfide, (CH3Re(NR)2)2(mu-S)2 (4a, R = Ad; 4b, R = Ar), with second-order rate constants of 17 and 1.6 x 10(-4) L mol-1 s-1 in C6H6 and CH3CN, respectively. Complex 4b has been structurally characterized. The crystal data are as follows: space group C2/c, a = 30.4831 (19) A, b = 10.9766 (7) A, c = 18.1645 (11) A, beta = 108.268(1) degrees, V = 5771.5 (6) A3, Z = 4. The reaction between CH3Re(NAr)2O (2b) and H2S also yields the dinuclear compound 4b. Unlike 1b, 1a reacts with aniline derivatives to give mixed imido rhenium complexes.  相似文献   

15.
This paper reports a pH-dependent H2-activation [H2 (pH 1-4) --> H+ + H- (pH -1) --> 2H+ + 2e-] promoted by CpIr complexes [Cp = eta5-C5(CH3)5]. In a pH range of about 1-4, an aqueous HNO3 solution of [CpIr(III)(H2O)3]2+ (1) reacts with 3 equiv of H2 to yield a solution of [(CpIr(III))2(mu-H)3]+ (2) as a result of heterolytic H2-activation [2[1] + 3H2 (pH 1-4) --> [2] + 3H+ + 6H2O]. The hydrido ligands of 2 display protonic behavior and undergo H/D exchange with D+: [M-(H)3-M]+ + 3D+ <==>[M-(D)3-M]+ + 3H+ (where M = CpIr). Complex 2 is insoluble in a pH range of about -0.2 (1.6 M HNO3/H2O) to -0.8 (6.3 M HNO3/H2O). At pH -1 (10 M HNO3/H2O), a powder of 2 drastically reacts with HNO3 to give a solution of [CpIr(III)(NO3)2] (3) with evolution of H2, NO, and NO2 gases. D-labeling experiments show that the evolved H2 is derived from the hydrido ligands of 2. These results suggest that oxidation of the hydrido ligands of 2 [[2] + 4NO3- (pH -1) --> 2[3] + H2 + H+ + 4e-] couples to reduction of NO3- (NO3- --> NO2- --> NO). To complete the reaction cycle, complex 3 is transformed into 1 by increasing the pH of the solution from -1 to 1. Therefore, we are able to repeat the reaction cycle using 1, H2, and a pH gradient between 1 and -1. A conceivable mechanism for the H2-activation cycle with reduction of NO3- is proposed.  相似文献   

16.
陈立佛  王均环 《化学学报》1983,41(4):375-379
The reaction of perfluoro- (3, 4-dimethyl-3-ethylhexene-(2)) (1) with allyl alcohol under different conditions gave different products. Compound 1 reacted with sodium allyl alcoholate yielding 2-(1'-allyloxy-tetrafluoroethyl)-perfluoro(3-methyl-3-ethylpentene- (1))(2). In the presence of triethylamine, 1 reacted with allyl alcohol to give 2-allyloxy-perfluoro (3, 4-dimethy1-4-ethylhexene- (2))(3), and in the presence of acetone and K2CO3 to give compound 4. These reactions all gave allyl-3-trifluoromethyl-3- pentafluoroethyl-2,2-dihydro-pentafluorovalerate (5a) as byproduct. Compound 1 reacted with allyl alcohol in the presence of triethylamine at 20-22`C to give 2, at 30-35`C to give a mixture of 2 and 3 and at 35-40`C to give a mixture of 3 and 5a respectively. Compound 2 was transformed to compound 4 in acetone and in the psesence of K2CO3, \o\ compound 5a or 5b in the corresponding alcohol and to compound 6 on reacting with dimethylamine. Compound 2 as well as 3 was converted to perfluoro-(3-ethyl-2,3,4,5- tetramethyl-2,3-dihydrofuran) (7) by KF in sulpholane.  相似文献   

17.
Chi YN  Huang KL  Cui FY  Xu YQ  Hu CW 《Inorganic chemistry》2006,45(26):10605-10612
Using two ligands, 4,6-bis(2-pyridyl)-2-aminopyrimidine (L1) with two N,N'-chelating sites and 4-(2-pyridyl)-6-(4-pyridyl)-2-aminopyrimidine (L2) (as the isomer of L1) containing one chelating site and one bridging unit, a series of novel Ag(I) complexes varying from zero- to two-dimensions have been prepared and their crystal structures determined via single-crystal X-ray diffraction. The two ligands are employed for the first time in coordination chemistry. The structures of compounds 1-3 are directed by the counteranions adopted in the reaction system: The reaction of L1 with AgNO3 yielded a dimer [Ag2L12](NO3)2 (1). The reaction of L1 with AgCF3SO3 led to a one-dimension "V-shaped" chain {[AgL1](CF3SO3)}n (2). When AgSCN was used, a one-dimension ladder {[Ag2L1(SCN)2].H2O}n (3) was obtained. While ligand L2 reacted with AgNO3, a two-dimension {[Ag2(L2)2](NO3)2.H2O}n (4) was prepared with the help of an argentophilic interaction. Compounds 1-4 display room-temperature photoluminescence.  相似文献   

18.
Photochromic performance of diarylethene single crystals was controlled by crystal engineering using non-covalent aromatic-aromatic interactions as the directional intermolecular force. A diarylethene derivative with two pentafluorophenyl groups, 1,2-bis(2-methyl-5-pentafluorophenyl-3-thienyl)perfluorocyclopentene (1a), formed stoichiometric co-crystals with benzene (Bz) and naphthalene (Np) by aryl-perfluoroaryl interactions. Face-to-face pi-stacking interactions between the pentafluorophenyl groups of 1a and the aromatic molecules are responsible for 2:1 and 1:1 stoichiometric compositions in 1a/Bz and 1a/Np co-crystals, respectively. The diarylethene underwent thermally stable and photoreversible photochromic reactions in a homo-crystal of 1a and co-crystals 1a/Bz and 1a/Np. The absorption spectra of the photogenerated closed-ring isomers varied depending on the conformation of the diarylethene molecules packed in the crystals. The diarylethene 1a also formed 1:1 stoichiometric co-crystals with different kinds of diarylethenes, 1,2-bis(2-ethyl-5-phenyl-3-thienyl)perfluorocyclopentene (2a) and 1,2-bis[2-methyl-5-(1-naphthyl)-3-thienyl]perfluorocyclopentene (3a). Both co-crystals 1a/2a and 1a/3a showed photochromism. Although 1a, 2a, and 3a underwent efficient photocyclization reactions in their homo-crystals, highly selective photocyclization reactions of 2a or 3a were observed in the co-crystals. The selective reactions were confirmed by HPLC and X-ray crystallography. Excited energy transfers from 1a to 2a and from 1a to 3a are considered to occur and cause the selective reactions.  相似文献   

19.
Five-coordinated trithiotungsten complexes (PPh(4))[(dmsp)W(S)(3)] (1a) and (PPh(4))[(dpsp)W(S)(3)] (1b) (R(2)PCH(2)CH(2)S(-); R = Me (dmsp-)), Ph (dpsp-))) were synthesized by addition of Hdmsp and Hdpsp to a THF solution of (PPh(4))[(EtS)W(S)(3)]. Treatment of 1a with CuBr in the presence of PPh(3) in CH(3)CN afforded a WCu(2) cluster (dmsp)WS(3)Cu(2)(PPh(3))(2)Br (2). The reaction of 1a with 1 equiv of FeCl(2) went smoothly to generate a 1:1 adduct (PPh(4))[(dmsp)WS(3)(FeCl(2))] (3), while 3 did not react further with excess FeCl(2). On the other hand, 3 was found to react with [Fe(CH(3)CN)(6)](ClO(4))(2), giving rise to an unusual tetranuclear cluster, [(dmsp)WS(3)](2)Fe(2)Cl (4), while the reaction of 1a with 2 equiv of [Fe(CH(3)CN)(6)](ClO(4))(2) led to a cyclic octanuclear cluster [(dmsp)WS(3)Fe](4) (5). Although the oxidation states of W(VI), Cu(I), and Fe(II) are retained in 2 and 3, reduction of the metal ions occurs in the formation of 4 and 5. All the complexes reported in this paper were structurally characterized by X-ray analysis. It is anticipated that the new type of trithiotungsten complexes, 1a and 1b, will serve as potential synthons for various heterometallic sulfide clusters.  相似文献   

20.
The new complexes trans-[a2Pt(Hpymo-N1)2]X2 (a = NH3, X = NO3 (1a); a = CH3NH2, X = NO3 (1b); a = CH3NH2, X = ClO4 (1c); Hpymo = 2-hydroxypyrimidine) have been prepared by reaction of trans-[a2Pt(H2O)2]-X2 with 2-hydroxypyrimidine at 80 degrees C in water. Complex 1c cocrystallizes in water with 2-aminopyrimidine (ampym) through formation of complementary pairs of hydrogen bonds to give the supramolecular hexagon [trans-[(CH3NH2)2Pt(pymo-N1)(Hpymo-N1)].Hampym[2(ClO4)4 (2). Molecular recognition of ampym by 1c is responsible for a conformational change of the two hydroxypyrimidine ligands in 1c from anti (1c) to syn and in addition for a proton transfer from a Hpymo residue to ampym against 1.5 units of pKa gradient. 1H NMR concentration-dependent studies as well as NOE experiments in dmso-d6 and dmf-d7 show that 2 dissociates in solution. Compound 1a reacts in NH3:H2O (1:3) with AgI to give the polymeric species [trans-[(NH3)2Pt(mu-pymo-N1,N3)2Ag(H2O)]-NO3]n (3). In contrast to 2, in the polymeric structure the trans-[NH3)2Pt(pymo)2] entities adopt an anti conformation. Nevertheless, the [(H2O)Ag(pymo)2] residues present a syn conformation that leads to a meander-like global structure. Compounds 1b, 1c, 2, and 3 have been studied by X-ray crystallography: (1b) triclinic space group, P1, a = 9.300(2) A, b = 10.483(2) A, c = 11.050(2) A, alpha = 68.21(3) degrees, beta = 75.47(3) degrees, gamma = 73.83(3) degrees, Z = 2, R1 = 0.025, and wR2 = 0.062; (1c) triclinic space group, P1, a = 5.692(1) A, b = 7.758(2) A, c = 11.236(2) A, alpha = 93.12(3) degrees, beta = 92.86(3) degrees, gamma = 102.58(3) degrees, Z = 2, R1 = 0.048, and wR2 = 0.119; (2) triclinic space group, P1, a = 8.355(2) A, b = 11.221(2) A, c = 13.004(3) A, alpha = 86.76(3) degrees, beta = 78.62(3) degrees, gamma = 77.96(3) degrees, Z = 2, R1 = 0.033, and wR2 = 0.080; (3) monoclinic space group, C2/c, a = 5.345(1) A, b = 23.998(5) A, c = 12.474(2) A, beta = 102.27(3) degrees, Z = 8, R1 = 0.041, and wR2 = 0.093.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号