首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Doped SnO2 thin films have been prepared by sputtering from two different targets: antimony doped tin oxide (ATO) and antimony and zinc doped tin oxide (AZTO). In the case of ATO ceramic, the antimony amount only reaches 0.012 mol per formula unit due to its evaporation at high temperature while the presence of Zn2+ in AZTO prevents the antimony evaporation, greatly enhances the ceramic density and allows the deposition of thin films with a high deposition rate. Both types of thin films have a dense morphology with a smooth surface and they are polycrystalline. For post-annealed ATO thin films, the Drude model was applied to deduce the carrier concentration, the optical mobility as well as the resistivity. The carrier concentration is around ten times higher for ATO thin films compared to AZTO. The two combined effects (higher carrier concentration and mobility) for ATO thin films doped with 1.2% of Sb lead to the best optoelectronic performances, confirming previous results obtained with ceramics. Nevertheless, we have a better opportunity to modulate the conductivity in the case of AZTO thin films.  相似文献   

2.
Thin films of antimony doped tin oxide (SnO2:Sb) were prepared by spray pyrolysis technique using SnCl2 as precursor with the various antimony doping levels ranging from 1 to 4 wt%. The XRD analysis showed that the undoped SnO2 films grow in (211) preferred orientation whereas the Sb doped films grow in (200) plane. Scanning electron microscopy studies indicated that the surface of the films prepared with lower doping level (1 wt%) consists of larger grains whereas those prepared with higher doping levels (>1 wt%) consist of smaller grains. The sheet resistance has been found to be reduced considerably (2.17 Ω/□) for Sb doped films. To the best of our knowledge this is the lowest sheet resistance obtained for Sb doped SnO2 thin films.  相似文献   

3.
Undoped and tin (Sn) doped ZnO thin films have been prepared by spray pyrolysis method. Effect of Sn dopant on the crystalline structure and morphological properties of ZnO thin films has been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) method. XRD patterns confirm that the films have polycrystalline nature. While undoped ZnO film has (101) as the preferred orientation, Sn doped ZnO thin films have (002) as the preferred orientation. Grain sizes, lattice parameters and texture coefficient values of the films were determined. Microstructure was analyzed by SEM and the influence of the doping concentration in the microstructure of the films is investigated.  相似文献   

4.
Doubly doped (simultaneous doping of antimony and fluorine) tin oxide films (SnO2:Sb:F) have been fabricated by employing an inexpensive and simplified spray technique using perfume atomizer from aqueous solution of SnCl2 precursor. The structural studies revealed that the films are highly crystalline in nature with preferential orientation along the (2 0 0) plane. It is found that the size of the crystallites of the doubly doped tin oxide films is larger (69 nm) than that (27 nm) of their undoped counterparts. The dislocation density of the doubly doped film is lesser (2.08×1014 lines/m2) when compared with that of the undoped film (13.2×1014 lines/m2), indicating the higher degree of crystallinity of the doubly doped films. The SEM images depict that the films are homogeneous and uniform. The optical transmittance in the visible range and the optical band gap of the doubly doped films are 71% and 3.56 eV respectively. The sheet resistance (4.13 Ω/□) attained for the doubly doped film in this study is lower than the values reported for spray deposited fluorine or antimony doped tin oxide films prepared from aqueous solution of SnCl2 precursor (without using methanol or ethanol).  相似文献   

5.
Tin dioxide thin films have been deposited on alumina substrates by different methods in order to test their reliability as a breath analyser. Despite the obvious simplicity of spray pyrolysis, both the structural and electrical properties of the films thus prepared were strongly dependent to the deposition conditions. The samples exhibited poor crystallinity and porous microstructure. They were sensitive to ethanol vapour but since the resistance of the samples reached several MΩ, antimony doping was performed to fit a more convenient detection range. An alternative method was then used to prepare tin dioxyde thin films by evaporation of metallic tin followed by thermal oxidation. In this case, grain size was enhanced up to 100 nm but films remained highly porous. The ethanol sensitivity of evaporated samples was determined. In order to study more accurately the influence of microstructure on sensing ability, dense thin films were prepared using a CVD method with tetrabutyl tin as precursor. Preliminary results indicated that films with different crystallite sizes could be grown by varying the deposition temperature. Paper presented at the 2nd Euroconference on Solid State Ionics, Funchal, Madeira, Portugal, Sept. 10–16, 1995  相似文献   

6.
Conversion electron Mössbauer spectroscopy (CEMS) has been used to study tin oxide films prepared by sol-gel dipping and sputtering. The spectra of films prepared by sol-gel route result close to that of crystalline SnO2 after heat treatment at a temperature as low as 150°C. The Mössbauer parameters of as sputter deposited films indicate that the structure of the deposited stannic oxide has an amorphous character more pronounced for thinner samples. The structure becomes predominantly that of crystalline SnO2 by heating at 550°C for 30 min provided the film thickness is higher than 10 nm.  相似文献   

7.
利用射频磁控反应溅射技术,制备了氮掺杂的SiO2纳米薄膜.发现N掺杂SiO2体系纳米薄膜具有铁磁性.较小的氮化硅颗粒均匀分布在氧化硅基质中有利于磁有序的形成.基底温度为400℃时,样品薄膜具有最大的饱和磁化强度和矫顽力,分别为35 emu/cm3和75 Oe.薄膜的磁性可能产生于氮化硅和氧化硅的界面.理论计算表明,N掺杂SiO2体系具有净自旋.同时,由氮化硅和氧化硅界面之间的电荷转移导致的轨道磁矩也会对样品的磁性有贡献 关键词: 2薄膜')" href="#">N掺杂SiO2薄膜 射频磁控反应溅射 界面磁性 基底温度  相似文献   

8.
Undoped, Ga-, In-, Zr-, and Sn-doped ZnO transparent semiconductor thin films were deposited on alkali-free glasses by sol–gel method. 2-methoxyethanol (2-ME) and diethanolamine (DEA) were chosen as a solvent and a stabilizer, respectively. The doping concentration was maintained at 2 at.% in the impurity doping precursor solutions. The effects of different dopants on the structural, optical, and electrical properties of ZnO thin films were investigated. XRD results show that all annealed ZnO-based thin films had a hexagonal (wurtzite) structure. ZnO thin films doped with impurity elements obviously improved the surface flatness and enhanced the optical transmittance. All impurity doped ZnO thin films showed high transparency in the visible range (>91%). The Ga- and In- doped ZnO thin films exhibited higher Hall mobility and lower resistivity than did the undoped ZnO thin film.  相似文献   

9.
The antimony doped tin oxide (SnO2:Sb) (ATO) thin films were prepared by oblique angle electron beam evaporation technique. X-ray diffraction, field emission scanning electron microscopy, UV-vis-NIR spectrophotometer and four-point probe resistor were employed to characterize the structure, morphology, optical and electrical properties. The results show that oblique angle deposition ATO thin films with tilted columns structure are anisotropic. The in-plane birefringence of optical anisotropy is up to 0.035 at α = 70°, which means that it is suitable as wave plate and polarizer. The electrical anisotropy of sheet resistance shows that the sheet resistance parallel to the deposition plane is larger than that perpendicular to the deposition plane and it can be changed from 900 Ω/□ to 3500 Ω/□ for deposition angle from 40° to 85°, which means that the sheet resistance can be effectively tuned by changing the deposition angle. Additionally, the sandwich structure of SiO2 buffer layer plus normal ATO films and oblique angle deposition ATO films can reduce the resistance, which can balance the optical and electrical anisotropy. It is suggested that oblique angle deposition ATO thin films can be used as transparent conductive thin films in solar cell, anti-foggy windows and multifunctional carrier in liquid crystal display.  相似文献   

10.
Undoped and cesium‐doped zinc oxide (ZnO) thin films have been deposited on sapphire substrate (0001) using the sol–gel method. Films were preheated at 300 °C for 10 min and annealed at 600 and 800 °C for 1 h. The grown thin films were confirmed to be of wurtzite structure using X‐ray diffraction. Surface morphology of the films was analyzed using scanning electron microscopy. The photoluminescence (PL) spectra of ZnO showed a strong ultraviolet (UV) emission band located at 3.263 eV and a very weak visible emission associated with deep‐level defects. Cesium incorporation induced a blue shift of the optical band gap and quenching of the near‐band‐edge PL for nanocrystalline thin film at room temperatures because of the band‐filling effect of free carriers. A shift of about 10–15 cm−1 is observed for the first‐order longitudinal‐optical (LO) phonon Raman peak of the nanocrystals when compared to the LO phonon peak of bulk ZnO. The UV resonant Raman excitation at RT shows multiphonon LO modes up to fifth order. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Nanostructured zinc oxide thin films were prepared by spray pyrolysis technique using Zn(NO3)2·6H2O as the precursor solution. The resulting films were investigated by X-ray diffraction and scanning electron microscopy to know crystal structure, size of crystallites and surface morphology. The films have been found to be polycrystalline zinc oxide, possessing hexagonal wurtzite crystal structure and nanocrystallite with grain size of approximately 30-35 nm. The LPG sensing performance of the films has been investigated at various concentrations of LPG in air at operating temperatures varying from 225 to 400 °C. At 325 °C the maximum responses of 46.3% and 48.9% have been observed, respectively, for concentrations of 0.8 and 1 vol% of LPG in air (1 vol% of LPG in air corresponds to 50% LEL of LPG in air). The recovery time has been found to be less than the response time for all concentrations of LPG. A possible reaction mechanism of LPG sensing has been proposed.  相似文献   

12.
Semiconducting Sb2Se3 thin films have been prepared onto the stainless steel and fluorine doped tin oxide coated glass substrates from non-aqueous media using an electrodeposition technique. The electrodeposition potentials for different bath compositions and concentrations of solution have been estimated from the polarization curves. SbCl3 and SeO2 in the volumetric proportion as 1:1 with their equimolar solution concentration of 0.05 M form good quality films. The films are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and optical absorption techniques. The SEM studies show that the film covers the total substrate surface with uneven surface morphology. The XRD patterns of the films obtained by varying compositions and concentrations show that the as-deposited films are polycrystalline with relatively higher grain size for 1:1 composition and 0.05 M concentration. The optical band gap energy for indirect transition in Sb2Se3 thin films is found to be 1.195 eV.  相似文献   

13.
In the present work, ferric oxide nanonails were prepared by screen printing method on borosilicate glass substrate and their electrical and LPG sensing properties were investigated. The structural and morphological characterizations of the material were analyzed by means of X-ray diffraction (XRD) and Scanning electron microscopy (SEM). XRD pattern revealed crystalline α-phase and rhombohedral crystal structure. SEM images show nanonails type of morphology throughout the surface. Optical characterization of the film was carried out by UV-visible spectrophotometer. By Tauc plot the estimated value of band gap of film was found 3.85 eV. The LPG sensing properties of the ferric oxide film were investigated at room temperature for different vol.% of LPG. The variations in electrical resistance of the film were measured with the exposure of LPG as a function of time. The maximum values of sensitivity and sensor response factors were found 51 and 50 respectively for 2 vol.% of LPG. The activation energy calculated from Arrhenius plot was found 0.95 eV. The response and recovery time of sensing film were found ∼120 s and 150 s respectively. These experimental results show that nanonails structured ferric oxide is a promising material as LPG sensor.  相似文献   

14.
Nanocrystalline cerium oxide (CeO2) thin films were deposited onto the fluorine doped tin oxide coated glass substrates using methanolic solution of cerium nitrate hexahydrate precursor by a simple spray pyrolysis technique. Thermal analysis of the precursor salt showed the onset of crystallization of CeO2 at 300 °C. Therefore, cerium dioxide thin films were prepared at different deposition temperatures from 300 to 450 °C. Films were transparent (T ~ 80%), polycrystalline with cubic fluorite crystal structure and having band gap energy (Eg) in the range of 3.04–3.6 eV. The different morphological features of the film obtained at various deposition temperatures had pronounced effect on the ion storage capacity (ISC) and electrochemical stability. The larger film thickness coupled with adequate degree of porosity of CeO2 films prepared at 400 °C showed higher ion storage capacity of 20.6 mC cm? 2 in 0.5 M LiClO4 + PC electrolyte. Such films were also electrochemically more stable than the other studied samples. The Ce4+/Ce3+ intervalancy charge transfer mechanism during the bleaching–lithiation of CeO2 film was directly evidenced from X-ray photoelectron spectroscopy. The optically passive behavior of the CeO2 film (prepared at 400 °C) is affirmed by its negligible transmission modulation upon Li+ ion insertion/extraction, irrespective of the extent of Li+ ion intercalation. The coloration efficiency of spray deposited tungsten oxide (WO3) thin film is found to enhance from 47 to 53 cm2 C? 1 when CeO2 is coupled with WO3 as a counter electrode in electrochromic device. Hence, CeO2 can be a good candidate for optically passive counter electrode as an ion storage layer.  相似文献   

15.
Here we introduce a facile method to fabricate patterned indium tin oxide (ITO) thin films via selective laser ablation at ambient conditions. By scanning the ITO thin films with focused Nd: YAG pulsed laser, the ITO thin films were selective ablated and patterned without using any conventional chemical etching or photolithography steps. Then we investigated the effects of scanning rate for the structure, morphology and optical properties of patterned ITO thin film. These results indicate that the epsilon-near-zero (ENZ) wavelength of ITO thin films can be tuned from 1100 nm to 1340 nm by adjusting the period of the micro-hole array in microstructure. The nonlinear absorption response of patterned ITO films was about 2.85 time than of the as-deposited ITO thin film. Additionally, the results of the Finite-Difference Time-Domain (FDTD) simulation are in good agreement with those of the experiments.  相似文献   

16.
P-type porous silicon (PS) structure has been prepared by anodic electrochemical etching process under optimized conditions. Photoluminescence studies of the PS structure show emission at longer wavelengths (red) for the excitation at 365 nm. Scanning electron microscope investigations of the PS surface confirm the formation of uniform porous structure, and the pore diameter have been estimated as 25 μm. Pd:SnO2/PS/p-Si heterojunction with top gold ohmic contact developed by conventional methods has been used as the sensor device. Sensing properties of the device towards liquefied petroleum gas (LPG) and NO2 gas have been investigated in an indigenously developed sensor test rig. The response and recovery characteristics of the sensor device at different operating temperatures show short response time for LPG. From the studies, maximum sensitivity and optimum operating temperature of the device towards LPG and NO2 gas sensing has been estimated as 69% at 180 °C and 52% at 220 °C, respectively. The developed sensor device shows a short response time of 25 and 57 s for sensing LPG and NO2 gases, respectively. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

17.
Zinc sulfide (ZnS) thin films have been deposited on microscopic glass and fluorine doped tin oxide substrates by nebulized spray pyrolysis technique with different substrate temperature and molar concentration. The structural, morphological, optical and electrical properties of the prepared ZnS thin films have been studied using X-ray diffraction (XRD), field emission scanning electronic microscopy (FESEM), UV–Vis spectrophotometer and Hall effect measurement. XRD patterns confirm that the prepared films are hexagonal wurtzite structure, with (100) as preferred orientation. The structural parameters such as crystallite size, dislocation density and microstrain have been calculated from XRD study. Hydrophilic and hydrophobic nature is revealed by contact angle measurements. FESEM image of the ZnS thin films show smooth and uniform spherical grains are uniformly arranged on the films surface. Optical transmittance spectrum illustrate that the ZnS films were high transparent in the visible region and gets absorbed in the UV region. The optical band gap value of the ZnS thin films decreased with the increasing substrate temperature. The average transmittance is found to be 82% and direct band gap value is 3.56 eV at 400 °C for set D. The Activation energy of the prepared ZnS films was determined from the graph between ln (ρ) versus temperature (K?1) using a four-probe method.  相似文献   

18.
19.
Sn-doped ZnO thin films were deposited on clean glass substrates using the chemical spray pyrolysis technique. XRD analyses confirm stable ZnO hexagonal wurtzite structure of the films with crystallite size in the range of 20–28 nm. The surface roughness of the films increases on Sn doping, which favors to higher adsorption of oxygen species on the film surface, resulting in higher gas response. Optical studies reveal that the band gap decreases on Sn doping. All the films show near band edge emission, and on Sn doping the luminescence peak intensity has been found to increase. Photocurrent in the 1.5 at.% doped film enhances about three times to that observed in the undoped ZnO film. Among all the films examined, the 1.5 at.% Sn-doped film exhibits the maximum response (~94.5 %) at the operating temperature of 275?°C for 100 ppm concentration of formaldehyde, which is much higher than the response (~35 %) in the undoped film. The gas response of the film is attributed to the chemisorption of oxygen on the film surface and the subsequent reaction between the adsorbed oxygen species and the formaldehyde molecules.  相似文献   

20.
Bismuth ferric oxide (BFO) thin films were prepared on fluorine doped tin oxide (FTO) coated glass substrates using electrodeposition method from aqueous nitrate bath at room temperature. The various preparative parameters, such as bath composition, current density, deposition time, etc were optimized to get good quality BFO thin films. The structural, surface morphological, optical and dielectrical properties of the films were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), optical absorption and dielectric measurement techniques. The results show that electrodeposition method allows to synthesis BFO films. The films are free from pinholes and cracks. The magnitudes of dielectric constant and loss tangent showed inverse frequency dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号