首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium oxide (TiO2) films were deposited on silicon substrates at the temperature in the range 50–600 °C by DC reactive magnetron sputtering. It was found that the anatase and rutile phases co-existed in the TiO2 films deposited at 450–500 °C, while only the anatase phase existed in those deposited at other temperatures. The mechanism of such a crystallization behavior of TiO2 films is preliminarily explained.  相似文献   

2.
《Journal of Non》2007,353(52-54):4660-4665
Thin films of silicon carbide (SiC) were prepared using pulsed laser deposition (PLD) on Si(1 0 0) substrates at a temperature of 370 °C. Various structural characterizations showed the development of short-range SiC precipitates in the films. These films were annealed isochronally at temperatures of 800 °C, 1000 °C and 1200 °C for 2 h under an inert environment. Thermally induced crystalline ordering of SiC into β-SiC phase was investigated by X-ray diffraction (XRD), Raman spectroscopy and Fourier transforms infrared (FTIR) spectroscopic measurements. In addition to the crystallization of SiC films, high temperature annealing resulted in the dissolution of carbon clusters found in the as-grown films.  相似文献   

3.
Lihua Jiang  Xiao Zhang 《Journal of Non》2011,357(10):2187-2191
The effects of the annealing temperature on photoluminescence (PL) of non-stoichiometric silicon nitride (SiNx) thin films deposited by plasma enhanced chemical vapor deposition (PECVD) using ammonia and silane mixtures at 200 °C were investigated. The optical property and the chemical composition of the films annealed at different temperatures were investigated by PL spectroscopy and Fourier transform infrared absorption spectroscopy (FTIR), respectively. Based on the PL results and the analyses of the bonding configurations of the films, the light emission is attributed to the quantum confinement effect of the carriers inside silicon nanoparticles and radiative defect-related states. These results provide a better understanding of optical properties of silicon nanoparticles embedded in silicon nitride films and are useful for the application of nanosize silicon semiconductor material.  相似文献   

4.
The sol-gel route has been applied to obtain ZnO-TiO2 thin films. For comparison, pure TiO2 and ZnO films are also prepared from the corresponding solutions. The films are deposited by a spin-coated method on silicon and glass substrates. Their structural and vibrational properties have been studied as a function of the annealing temperatures (400-750 °C). Pure ZnO films crystallize in a wurtzite modification at a relatively low temperature of 400 °C, whereas the mixed oxide films show predominantly amorphous structure at this temperature. XRD analysis shows that by increasing the annealing temperatures, the sol-gel Zn/Ti oxide films reveal a certain degree of crystallization and their structures are found to be mixtures of wurtzite ZnO, Zn2TiO4, anatase TiO2 and amorphous fraction. The XRD analysis presumes that Zn2TiO4 becomes a favored phase at the highest annealing temperature of 750 °C. The obtained thin films are uniform with no visual defects. The optical properties of ZnO-TiO2 films have been compared with those of single component films (ZnO and TiO2). The mixed oxide films present a high transparency with a slight decrease by increasing the annealing temperature.  相似文献   

5.
Thin films of crystalline lithium niobate (LN) grown on Si(1 0 0) and SiO2 substrates by electron cyclotron resonance plasma sputtering exhibit distinct interfacial structures that strongly affect the orientation of respective films. Growth at 460–600 °C on the Si(1 0 0) surface produced columnar domains of LiNbO3 with well-oriented c-axes, i.e., normal to the surface. When the SiO2 substrate was similarly exposed to plasma at temperatures above 500 °C, however, increased diffusion of Li and Nb atoms into the SiO2 film was seen and this led to an LN–SiO2 alloy interface in which crystal-axis orientations were randomized. This problem was solved by solid-phase crystallization of the deposited film of amorphous LN; the degree of c-axis orientation was then immune to the choice of substrate material.  相似文献   

6.
S. Hirano  K. Kato 《Journal of Non》1988,100(1-3):538-541
Homogeneous, crack-free, thin films of crystalline LiNbO3 were synthesized above 250°C on Si(100) substrates by the dip-coating method using a double alkoxide solution. The coating solution, which was prepared by the controlled partial hydrolysis of the double alkoxide, gave stoichiometric LiNbO3 crystalline films at temperatures as low as 250°C. The concentration of the alkoxide solution influenced both of thickness and quality of films. Crystallinity of thin film top-coated directly on the substrate affected the crystallization state of films coated on the film remarkably. Films crystallized on -Al2O3(0001) showed preferred orientation along the c-axis, while the preferred orientation could not be observed on Si(100) substrates.  相似文献   

7.
Li Wang 《Journal of Non》2011,357(3):1063-1069
Amorphous SiC has superior mechanical, chemical, electrical, and optical properties which are process dependent. In this study, the impact of deposition temperature and substrate choice on the chemical composition and bonding of deposited amorphous SiC is investigated, both 6 in. single-crystalline Si and oxide covered Si wafers were used as substrates. The deposition was performed in a standard low-pressure chemical vapour deposition reactor, methylsilane was used as the single precursor, and deposition temperature was set at 600 and 650 °C. XPS analyses were employed to investigate the chemical composition, Si/C ratio, and chemical bonding of deposited amorphous SiC. The results demonstrate that these properties varied with deposition temperature, and the impact of substrate on them became minor when deposition temperature was raised up from 600 °C to 650 °C. Nearly stoichiometric amorphous SiC with higher impurity concentration was deposited on crystalline Si substrate at 600 °C. Slightly carbon rich amorphous SiC films with much lower impurity concentration were prepared at 650 °C on both kinds of substrates. Tetrahedral Si-C bonds were found to be the dominant bonds in all deposited amorphous SiC. No contribution from Si-H/Si-Si but from sp2 and sp3 C-C/C-H bonds was identified.  相似文献   

8.
Amorphous silicon oxide thin films were prepared by evaporation of a silicon oxide powder. Samples were prepared under ultrahigh vacuum, under a flow of hydrogen ions or under a molecular hydrogen atmosphere. Two others sets of samples were prepared using deuterium instead of hydrogen. These five groups of samples were then annealed to different temperatures up to 950 °C and were exposed to the ambient air. The samples present different densities and microstructures. The sample prepared under ultrahigh vacuum is dense, hydrogen free and OH-bond free. Samples prepared under atomic hydrogen and deuterium flows contain Si–H and Si–D bonds, respectively, and are OH-bond free. The sample prepared under a molecular hydrogen atmosphere is very similar to that prepared under a molecular deuterium atmosphere. Both samples are porous and contain Si–H bonds and OH-groups coming from the exposure to the air. All the samples show visible photoluminescence attributed to isolated silicon clusters. The photoluminescence intensity increases with thermal annealing post-treatments up to an optimal annealing temperature. This maximum value is equal to 650 °C for the unhydrogenated sample and the sample prepared under an atomic hydrogen flow and to 800 °C for the sample prepared under a molecular hydrogen atmosphere. This difference is correlated to the different microstructures of the samples. Moreover the strongest photoluminescence intensity is obtained for the porous sample.  相似文献   

9.
A process for production of thick (>10 μm) titania-doped silica films on Si substrates by repetitive spin-coating of sol-gel material and rapid thermal annealing for 10 s in the range 800–1200°C is described. The dependence of overall thickness and etch rate in buffered HF on annealing temperature is described, and it is shown that films annealed at low (< 1175°C) temperatures have a relatively large thickness and etch rate. However, films having the properties of fully densified material (minimum thickness and etch rate) can be produced by subsequent consolidation. The film stress characteristics are similar to those phosphosilicate glass formed by the same process: films annealed below a critical temperature (< 1075°C) are under tensile stress at the annealing temperature, and crack before a thick film can be built up. Refractive index data are given; these show that only fully consolidated films have the refractive index expected from their SiO2 and TiO2 compositions. Finally, discrepancies in results for thickness of unconsolidated single-layer and multilayer films are explained using a simple model that accounts for the effect of cumulative densification.  相似文献   

10.
The growth and morphological features of MOCVD TiOxNy films have been characterized to evaluate the effect of various process parameters on film growth. XRD analysis of the films deposited at 600°C on Si(1 1 1) and mica show a TiN(1 1 1) peak at 2θ=36.6°, but only anatase peaks are detected below 550°C. Above 650°C, both anatase and rutile peaks are detected. The presence of ammonia is not effective below 550°C as the deposited film is mostly TiO2. Also, ammonia does not play any role in homogeneous nucleation in the gas phase, as evident by the deposition of anatase/rutile particles above 650°C. The following changes in the morphological features are observed by varying process parameters. By increasing the ratio of titanium-isopropoxide to ammonia flow, the cluster shape changes from angular to rounded; dilution of the flow results in larger elongated clusters; increase in flow rate at constant precursor to ammonia ratios, changes the cluster shape from rounded to elongated and the cluster size deceases. Deposition at higher temperatures results in finer clusters with a slower growth rate and eventually results in a very thin film with particle deposition at 650°C and above.  相似文献   

11.
Undoped and Pd-doped titanium oxide thin films (0.5 wt.%) were prepared by the sol-gel technique (dip-coating) on glass and silicon substrates. The as-deposited thin films were compacted by subjecting them to different annealing temperatures (300 °C, 500 °C). The dependences of the electrical conductivity vs. inverse temperature were investigated in air and in vacuum. A study of the effects of Pd-doping, annealing temperature and ambient conditions on their electrical properties was performed. The sensing behavior of titanium oxide thin films exposed to some reducing gases (methane, acetone, ethanol, formaldehyde and liquefied petroleum gas) was carried out, by means of electrical conductivity measurements. All the studied films are most sensitive to formaldehyde, with a special remark for the Pd-doped ones deposited on silicon substrates.  相似文献   

12.
Epitaxial MgO films were grown on Si(1 1 1) substrates at 800°C using methylmagnesium tert-butoxide (MeMgOtBu) as a single precursor under high-vacuum conditions (5×10−6 Torr). The crystalline structure, morphology, and chemical composition of the deposited films were investigated by X-ray diffraction, X-ray pole figure analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The results show that epitaxial MgO films with correct stoichiometry can be deposited on Si(1 1 1) at 800°C. The single precursor methylmagnesium tert-butoxide has been found suitable for the epitaxial growth of MgO on Si(1 1 1) substrates.  相似文献   

13.
Zr0.6Al0.4O1.8 dielectric films were deposited directly on strained SiGe substrates at room temperature by ultra-high vacuum electron-beam evaporation (UHV-EBE) and then annealed in N2 under various temperatures. X-ray diffraction (XRD) reveals that the onset crystallization temperature of the Zr0.6Al0.4O1.8 film is about 900 °C, 400 °C higher than that of pure ZrO2. The amorphous Zr0.6Al0.4O1.8 film with a physical thickness of ∼12 nm and an amorphous interfacial layer (IL) with a physical thickness of ∼3 nm have been observed by high-resolution transmission electron microscopy (HRTEM). In addition, it is demonstrated there is no undesirable amorphous phase separation during annealing at temperatures below and equal to 800 °C in the Zr0.6Al0.4O1.8 film. The chemical composition of the Zr0.6Al0.4O1.8 film has been studied using secondary ion mass spectroscopy (SIMS).  相似文献   

14.
Titanium dioxide films have been deposited using DC magnetron sputtering technique. Films were deposited onto RCA cleaned p‐silicon substrates at the ambient temperature at an oxygen partial pressure of 7 × 10–5 mbar and sputtering pressure of 1 × 10 –3 mbar. The deposited films were annealed in the temperature range 673–873 K. The structure and composition of the films were confirmed using X‐ray diffraction and Auger electron spectroscopy. The structure of the films deposited at the ambient was found to be amorphous and the films annealed at 673 K and above were crystalline with anatase structure. The lattice constants, grain size, microstrain and the dislocation density of the film are calculated and correlated with annealing temperature.  相似文献   

15.
GaN films were grown by metal organic chemical vapor deposition on TaC substrates that were created by pulsed laser deposition of TaC onto (0 0 0 1) SiC substrates at ∼1000 °C. This was done to determine if good quality TaC films could be grown, and if good quality GaN films could be grown on this closely lattice matched to GaN, conductive material. This was done by depositing the TaC on on-axis and 3° or 8° off-axis (0 0 0 1) SiC at temperatures ranging from 950 to 1200 °C, and examining them using X-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The GaN films were grown on as-deposited TaC films, and films annealed at 1200, 1400, or 1600 °C, and examined using the same techniques. The TaC films were polycrystalline with a slight (1 1 1) texture, and the grains were ∼200 nm in diameter. Films grown on-axis were found to be of higher quality than those grown on off-axis substrates, but the latter could be improved to a comparable quality by annealing them at 1200–1600 °C for 30 min. TaC films deposited at temperatures above 1000 °C were found to react with the SiC. GaN films could be deposited onto the TaC when the surface was nitrided with NH3 for 3 min at 1100 °C and the low temperature buffer layer was AlN. However, the GaN did not nucleate easily on the TaC film, and the crystallites did not have the desired (0 0 0 1) preferred orientation. They were ∼10 times larger than those typically seen in films grown on SiC or sapphire. Also the etch pit concentration in the GaN films grown on the TaC was more than 2 orders of magnitude less than it was for growth on the SiC.  相似文献   

16.
用快速光热退火制备多晶硅薄膜的研究   总被引:10,自引:3,他引:7  
用等离子体增强型化学气相沉积先得到非晶硅(a-Si:H)薄膜,再用卤钨灯照射的方法对其进行快速光热退火(RPTA),得到了多晶硅薄膜.然后,进行XRD衍射谱、暗电导率和拉曼光谱等的测量.结果发现,a-Si:H薄膜在RPTA退火中,退火温度在750℃以上,晶化时间需要2min,退火温度在650℃以下,晶化时间则需要2.5h;晶化后,晶粒的优先取向是(111)晶向;退火温度850℃时,得到的晶粒最大,暗电导率也最大;退火温度越高,晶化程度越好;退火时间越长,晶粒尺寸越大;光子激励在RPTA退火中起着重要作用.  相似文献   

17.
Several orientations of GaAs substrates, including (1 0 0), (4 1 1), (1 1 1) and (5 1 1) have been annealed in a metalorganic vapour phase epitaxy (MOVPE) horizontal reactor at different annealing temperatures and under different trimethyl-bismuth (TMBi) flux. Surface morphology of the annealed GaAs substrates was investigated by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show islands formation on all the studied samples. The density and size of Bi islands vary greatly with annealing temperature and TMBi flow. For different substrate orientations, the activation energies were deduced from Arrhenius plot of island density. Except for (5 1 1) oriented GaAs, all the studied orientations show the same activation energy of 1.8 eV. For low annealing temperature 420 °C, and under different Bi flux, each oriented substrate shows a specific behaviour. For higher temperatures 700 °C and above Bi islands are totally removed and the substrates are smooth. Surface change of (1 0 0) oriented GaAs substrate was in situ monitored by laser reflectometry.  相似文献   

18.
Homoepitaxial silicon carbide (SiC) films were grown on 3.5° off-oriented (0 0 0 1) 6H–SiC by metal-organic chemical vapor deposition (MOCVD) using bis-trimethylsilylmethane (BTMSM, C7H20Si2). A pronounced effect of the growth conditions such as source flow rate and growth temperature on the polytype formation and structural imperfection of the epilayer was observed. The growth behavior was explained by a step controlled epitaxy model. It was demonstrated by high-resolution X-ray diffractometry and transmission electron microscopy that high-quality 6H–SiC thin films were successfully grown at the optimized growth condition of substrate temperature 1440°C with the carrier gas flow rate of 10 sccm.  相似文献   

19.
Epitaxial thin films of TmFeCuO4 with a two-dimensional triangular lattice structure were successfully grown on yttria-stabilized-zirconia substrates by pulsed laser deposition and ex situ annealing in air. The films as-deposited below 500 °C showed no TmFeCuO4 phase and the subsequent annealing resulted in the decomposition of film components. On the other hand, as-grown films deposited at 800 °C showed an amorphous nature. Thermal annealing converted the amorphous films into highly (0 0 1)-oriented epitaxial films. The results of scanning electron microscopic analysis suggest that the crystal growth process during thermal annealing is dominated by the regrowth of non-uniformly shaped islands to the distinct uniform islands of hexagonal base.  相似文献   

20.
Fe0.8Ga0.2 films were deposited on bulk single-crystal (0 0 1) 0.69PMN-0.31PT substrates by DC magnetron sputtering to make magnetoelectric bilayer composites. Films deposited at temperatures below 600 °C were X-ray amorphous. Films deposited at temperatures of 600 °C and higher exhibited a single-crystal (0 0 1) disordered BCC structure. The crystalline FeGa films demonstrate a 45° twisted cube-on-cube epitaxial relationship with the PMN–PT substrates. Heterostructures with an X-ray amorphous FeGa film exhibited zero magnetoelectric response. Heterostructures with a 990 nm epitaxial FeGa film exhibited a large inverse magnetoelectric voltage coefficient of 13.4 (G cm)/V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号