首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this article is to acquaint the reader with the general concepts and capabilities of the Difference Potentials Method (DPM). DPM is used for the numerical solution of boundary-value and some other problems in difference and differential formulations. Difference potentials and DPM play the same role in the theory of solutions of linear systems of difference equations on multi-dimensional non-regular meshes as the classical Cauchy integral and the method of singular integral equations do in the theory of analytical functions (solutions Cauchy-Riemann system). The application of DPM to the solution of problems in difference formulation forms the first aspect of the method. The second aspect of the DPM implementation is the discretization and numerical solution of the Calderon-Seeley boundary pseudo-differential equations. The latter are equivalent to elliptical differential equations with variable coefficients in the domain; they are written making no use of fundamental solutions and integrals. Because of this fact ordinary methods for discretization of integral equations cannot be applied in this case. Calderon-Seeley equations have probably not been used for computations before the theory of DPM appeared. This second aspect for the implementation of DPM is that it does not require difference approximation on the boundary conditions of the original problem. The latter circumstance is just the main advantage of the second aspect in comparison with the first one. To begin with, we put forward and justify the main constructions and applications of DPM for problems connected with the Laplace equation. Further, we also outline the general theory and applications: both those already realized and anticipated.  相似文献   

2.
We present a Petri net (PN)-based approach to automatically generate disassembly process plans (DPPs) for product recycling or remanufacturing. We define an algorithm to generate a geometrically-based disassembly precedence matrix (DPM) from a CAD drawing of the product. We then define an algorithm to automatically generate a disassembly Petri net (DPN) from the DPM; the DPN is live, bounded, and reversible. The resulting DPN can be analyzed using the reachability tree method to generate feasible DPPs, and cost functions can be used to determine the optimal DPP. Since reachability tree generation is NP-complete, we develop a heuristic to dynamically explore the v likeliest lowest cost branches of the tree, to identify optimal or near-optimal DPPs. The cost function incorporates tool changes, changes in direction of movement, and individual part characteristics (e.g., hazardous). An example is used to illustrate the procedure. This approach can be used for products containing AND, OR, and complex AND/OR disassembly precedence relationships.  相似文献   

3.
The problem tackled in this paper deals with products of a finite number of triangular matrices in Max-Plus algebra, and more precisely with an optimization problem related to the product order. We propose a polynomial time optimization algorithm for 2×2 matrices products. We show that the problem under consideration generalizes numerous scheduling problems, like single machine problems or two-machine flow shop problems. Then, we show that for 3×3 matrices, the problem is NP-hard and we propose a branch-and-bound algorithm, lower bounds and upper bounds to solve it. We show that an important number of results in the literature can be obtained by solving the presented problem, which is a generalization of single machine problems, two- and three-machine flow shop scheduling problems. The branch-and-bound algorithm is tested in the general case and for a particular case and some computational experiments are presented and discussed.  相似文献   

4.
An algorithm is developed for solving a class of transportation scheduling problems. It applies for a variety of problems such as: the Combining Truck Trip problem, the Delivery problem, the School Bus problem, the Assignment of Buses to Schedules, and the Travelling Salesman problem. The objective functions of the above problems differ from each other. Yet, by using the “savings method” proposed by Clarke and Wright, and extended by Gaskell, we are able to define each one of the above problems as a series of assignment problems. The cost matrix entries of each one of the assignment problems are a function of the constraints of the particular routing or scheduling problem. The solution to the assignment problem determines an upper bound of the optimal solution to the original problem. By combining the above procedure with a Branch and Bound procedure, it is possible to obtain the optimal solution in a finite number of steps. In some cases the Branch and Bound process can be eliminated due to the nature of the problem and in those cases the algorithm is efficient.  相似文献   

5.
We develop a duality theory for problems of minimization of a convex functional on a convex set and apply this theory to optimal control problems with non-differentiable functional and state as well as control constraints. The dual problem is sometimes found to be simpler than the primal problem. The equivalence of the primal and the dual problem is established for problems in which the functional is strongly convex. A posteriori error are also given for such problems.  相似文献   

6.
对于一类具有广泛应用背景的非单调互补问题,我们构建了这类问题的Canonical对偶问题。其对偶问题可以写成和原问题类似的互补问题。我们给出了对偶问题和原问题解之间的对偶关系,并且将对偶问题转化成一个一维优化问题,这不但可以方便的求解这类问题,也为研究这类问题性质提供了一个非常直观的研究工具。最后,本文给出了几个算例来演示对偶问题的性质。  相似文献   

7.
This paper presents an application of Lemke's method to a class of Markov decision problems, appearing in the optimal stopping problems, and other well-known optimization problems. We consider a special case of the Markov decision problems with finitely many states, where the agent can choose one of the alternatives; getting a fixed reward immediately or paying the penalty for one term. We show that the problem can be reduced to a linear complementarity problem that can be solved by Lemke's method with the number of iterations less than the number of states. The reduced linear complementarity problem does not necessarily satisfy the copositive-plus condition. Nevertheless we show that the Lemke's method succeeds in solving the problem by proving that the problem satisfies a necessary and sufficient condition for the extended Lemke's method to compute a solution in the piecewise linear complementarity problem.  相似文献   

8.
Many optimization problems in economic analysis, when cast as optimal control problems, are initial-value problems, not two-point boundary-value problems. While the proof of Pontryagin (Ref. 1) is valid also for initial-value problems, it is desirable to present the potential practitioner with a simple proof specially constructed for initial-value problems. This paper proves the Pontryagin maximum principle for an initial-value problem with bounded controls, using a construction in which all comparison controls remain feasible. The continuity of the Hamiltonian is an immediate corollary. The same construction is also shown to produce the maximum principle for the problem of Bolza.  相似文献   

9.
This paper is concerned with a numerical approach to the problem of finding the leftmost eigenvalues of large sparse nonsymmetric generalised eigenvalue problems which arise in stability studies of incompressible fluid flow problems. The matrices have a special block structure that is typical of mixed finite element discretizations for such problems. The numerical approach is an extension of the hybrid technique introduced by Saad [22] and utilizes the idea of preconditioning the eigenvalue problem before applying Arnoldi's method. Two preconditioners, one a modified Cayley transform, the other a Chebyshev polynomial transform, are compared in numerical experiments on a double diffusive convection problem and the Cayley transform proves superior. The Cayley transform is then used to provide numerical results for the finite Taylor problem.  相似文献   

10.
This paper considers the problem of laminar forced convection between two parallel plates. We present an unified numerical approach for some problems related to this case: the problem of viscous dissipation with Dirichlet and Neumann boundary conditions and the Graetz problem. The solutions of these problems are obtained by a series expansion of the complete eigenfunctions system of some Sturm-Liouville problems. The eigenfunctions and eigenvalues of this Sturm-Liouville problem are obtained by using Galerkin’s method. Numerical examples are given for viscous fluids with various Brinkman numbers.  相似文献   

11.
Using the predicate language for ordered fields a class of problems referred to aslinear problems is defined. This class contains, for example, all systems of linear equations and inequalities, all linear programming problems, all integer programming problems with bounded variables, all linear complementarity problems, the testing of whether sets that are defined by linear inequalities are semilattices, all satisfiability problems in sentenial logic, the rank-computation of matrices, the computation of row-reduced echelon forms of matrices, and all quadratic programming problems with bounded variables. A single, one, algorithm, to which we refer as theUniversal Linear Machine, is described. It solves any instance of any linear problem. The Universal Linear Machine runs in two phases. Given a linear problem, in the first phase a Compiler running on a Turing Machine generates alinear algorithm for the problem. Then, given an instance of the linear problem, in the second phase the linear algorithm solves the particular instance of the linear problem. The linear algorithm is finite, deterministic, loopless and executes only the five ordered field operations — additions, multiplications, subtractions, divisions and comparisons. Conversely, we show that for each linear algorithm there is a linear problem which the linear algorithm solves uniquely. Finally, it is shown that with a linear algorithm for a linear problem, one can solve certain parametric instances of the linear problem.Research was supported in part by the National Science Foundation Grant DMS 92-07409, by the Department of Energy Grant DE-FG03-87-ER-25028, by the United States—Israel Binational Science Foundation Grant 90-00434 and by ONR Grant N00014-92-J1142.Corresponding author.  相似文献   

12.
We present an approximate method for the numerical solution of linear singularly perturbed two point boundary value problems in ordinary differential equations with a boundary layer on the left end of the underlying interval. It is motivated by the asymptotic behavior of singular perturbation problems. The original problem is divided into inner and outer region problems. The reduced problem is solved to obtain the terminal boundary condition. Then, a new inner region problem is created and solved as a two point boundary value problem. In turn, the outer region problem is also modified and the resulting problem is efficiently treated by employing the trapezoidal formula coupled with discrete invariant imbedding algorithm. The proposed method is iterative on the terminal point. Some numerical experiments have been included to demonstrate its applicability.  相似文献   

13.
We introduce a general transformation of parallel-machine time-dependent scheduling problems with critical lines. Using the transformation we define the class of equivalent time-dependent scheduling problems. We show that given an initial parallel-machine time-dependent scheduling problem with linear job processing times and the total weighted starting time criterion, the problem can be transformed in a unique way into another problem of this type in such a way that both these problems are mutually dual. We prove that a schedule is optimal for the initial problem if and only if the schedule constructed by this transformation is optimal for the transformed problem. The presented results explain remarkable similarities between different time-dependent scheduling problems and simplify the proofs of properties of such problems.  相似文献   

14.
We consider minimax optimization problems where each term in the objective function is a continuous, strictly decreasing function of a single variable and the constraints are linear. We develop relaxation-based algorithms to solve such problems. At each iteration, a relaxed minimax problem is solved, providing either an optimal solution or a better lower bound. We develop a general methodology for such relaxation schemes for the minimax optimization problem. The feasibility tests and formulation of subsequent relaxed problems can be done by using Phase I of the Simplex method and the Farkas multipliers provided by the final Simplex tableau when the corresponding problem is infeasible. Such relaxation-based algorithms are particularly attractive when the minimax optimization problem exhibits additional structure. We explore special structures for which the relaxed problem is formulated as a minimax problem with knapsack type constraints; efficient algorithms exist to solve such problems. The relaxation schemes are also adapted to solve certain resource allocation problems with substitutable resources. There, instead of Phase I of the Simplex method, a max-flow algorithm is used to test feasibility and formulate new relaxed problems.Corresponding author.Work was partially done while visiting AT&T Bell Laboratories.  相似文献   

15.
The purpose of this article is to describe an efficient search heuristic for the Maximum Edge-weighted Subgraph (MEwS) problem. This problem requires to find a subgraph such that the sum of the weights associated with the edges of the subgraph is maximized subject to a cardinality constraint. In this study a tabu search heuristic for the MEwS problem is proposed. Different algorithms to obtain an initial solution are presented. One neighborhood search strategy is also proposed. Preliminary computational results are reported for randomly generated test problems of MEwS problem with different densities and sizes. For most of test problems, the tabu search heuristic found good solutions. In addition, for large size test problems, the tabu search outperformed the local search heuristic appearing in the literature.  相似文献   

16.
We pose the problem of minimization for the relative preimage problem and prove a minimization theorem. The relative common preimage problem for a finite system of maps, whose particular cases are the relative coincidence and common root problems for finitely many maps, is reduced to the relative preimage problem. As corollaries, results concerning the relative coincidence problems for two maps, problems of fixed points and roots are obtained; these results, with certain distinctions, can be found in known papers by other authors.  相似文献   

17.
A periodic problem for the system of hyperbolic equations with finite time delay is investigated. The investigated problem is reduced to an equivalent problem, consisting the family of periodic problems for a system of ordinary differential equations with finite delay and integral equations using the method of a new functions introduction. Relationship of periodic problem for the system of hyperbolic equations with finite time delay and the family of periodic problems for the system of ordinary differential equations with finite delay is established. Algorithms for finding approximate solutions of the equivalent problem are constructed, and their convergence is proved. Criteria of well-posedness of periodic problem for the system of hyperbolic equations with finite time delay are obtained.  相似文献   

18.
List partitions generalize list colourings. Sandwich problems generalize recognition problems. The polynomial dichotomy (NP-complete versus polynomial) of list partition problems is solved for 4-dimensional partitions with the exception of one problem (the list stubborn problem) for which the complexity is known to be quasipolynomial. Every partition problem for 4 nonempty parts and only external constraints is known to be polynomial with the exception of one problem (the 2K2-partition problem) for which the complexity of the corresponding list problem is known to be NP-complete. The present paper considers external constraint 4 nonempty part sandwich problems. We extend the tools developed for polynomial solutions of recognition problems obtaining polynomial solutions for most corresponding sandwich versions. We extend the tools developed for NP-complete reductions of sandwich partition problems obtaining the classification into NP-complete for some external constraint 4 nonempty part sandwich problems. On the other hand and additionally, we propose a general strategy for defining polynomial reductions from the 2K2-partition problem to several external constraint 4 nonempty part sandwich problems, defining a class of 2K2-hard problems. Finally, we discuss the complexity of the Skew Partition Sandwich Problem.  相似文献   

19.
This paper presents the application of the multiple shooting technique to minimax optimal control problems (optimal control problems with Chebyshev performance index). A standard transformation is used to convert the minimax problem into an equivalent optimal control problem with state variable inequality constraints. Using this technique, the highly developed theory on the necessary conditions for state-restricted optimal control problems can be applied advantageously. It is shown that, in general, these necessary conditions lead to a boundary-value problem with switching conditions, which can be treated numerically by a special version of the multiple shooting algorithm. The method is tested on the problem of the optimal heating and cooling of a house. This application shows some typical difficulties arising with minimax optimal control problems, i.e., the estimation of the switching structure which is dependent on the parameters of the problem. This difficulty can be overcome by a careful application of a continuity method. Numerical solutions for the example are presented which demonstrate the efficiency of the method proposed.  相似文献   

20.
Recently, several successful applications of strong cutting plane methods to combinatorial optimization problems have renewed interest in cutting plane methods, and polyhedral characterizations, of integer programming problems. In this paper, we investigate the polyhedral structure of the capacitated plant location problem. Our purpose is to identify facets and valid inequalities for a wide range of capacitated fixed charge problems that contain this prototype problem as a substructure.The first part of the paper introduces a family of facets for a version of the capacitated plant location problem with a constant capacity for all plants. These facet inequalities depend on the capacity and thus differ fundamentally from the valid inequalities for the uncapacited version of the problem.We also introduce a second formulation for a model with indivisible customer demand and show that it is equivalent to a vertex packing problem on a derived graph. We identify facets and valid inequalities for this version of the problem by applying known results for the vertex packing polytope.This research was partially supported by Grant # ECS-8316224 from the National Science Foundation's Program in Systems Theory and Operations Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号