首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we construct compact manifolds with fixed boundary geometry which admit Riemannian metrics of unit volume with arbitrarily large Steklov spectral gap. We also study the effect of localized conformal deformations that fix the boundary geometry. For instance, we prove that it is possible to make the spectral gap arbitrarily large using conformal deformations which are localized on domains of small measure, as long as the support of the deformations contains and connects each component of the boundary.  相似文献   

2.
We consider an inverse problem of determining point sources in vibrating plate by boundary measurements. We show that the boundary observation of the domain determines uniquely the sources for an arbitrarily small time of observation and we establish a conditional stability.  相似文献   

3.
Positive results are derived concerning the long time dynamics of fixed step size numerical simulations of stochastic differential equation systems with Markovian switching. Euler–Maruyama and implicit theta-method discretisations are shown to capture exponential mean-square stability for all sufficiently small time-steps under appropriate conditions. Moreover, the decay rate, as measured by the second moment Lyapunov exponent, can be reproduced arbitrarily accurately. New finite-time convergence results are derived as an intermediate step in this analysis. We also show, however, that the mean-square A-stability of the theta method does not carry through to this switching scenario. The proof techniques are quite general and hence have the potential to be applied to other numerical methods.  相似文献   

4.
We consider the wave equation inside a strictly convex domain of dimension 2 and provide counterexamples to optimal Strichartz estimates. Such estimates inside convex domains lose regularity when compared to the flat case (at least for a subset of the usual range of indices), mainly due to microlocal phenomena such as caustics which are generated in arbitrarily small time near the boundary.  相似文献   

5.
We consider a ferromagnetic spin system with unbounded interactions on the d-dimensional integer lattice (d > 1). Under mild assumptions on the one-body interactions (so that arbitrarily deep double wells are allowed), we prove that if the coupling constants are small enough, then the finite volume Gibbs states satisfy the log-Sobolev inequality uniformly in the volume and the boundary condition. Received: 11 November 1997 / Revised version: 17 July 1998  相似文献   

6.
For a zero-sum differential game, we consider an algorithm for constructing optimal control strategies with the use of backward minimax constructions. The dynamics of the game is not necessarily linear, the players’ controls satisfy geometric constraints, and the terminal payoff function satisfies the Lipschitz condition and is compactly supported. The game value function is computed by multilinear interpolation of grid functions. We show that the algorithm error can be arbitrarily small if the discretization step in time is sufficiently small and the discretization step in the state space has a higher smallness order than the time discretization step. We show that the algorithm can be used for differential games with a terminal set. We present the results of computations for a problem of conflict control of a nonlinear pendulum.  相似文献   

7.
On a bounded Lipschitz domain we consider two selfadjoint operator realizations of the same second order elliptic differential expression subject to Robin boundary conditions, where the coefficients in the boundary conditions are functions. We prove that inequality between these functions on the boundary implies strict inequality between the eigenvalues of the two operators, provided that the inequality of the functions in the boundary conditions is strict on an arbitrarily small nonempty, open set.  相似文献   

8.
《Journal of Complexity》2006,22(5):676-690
We establish essentially optimal bounds on the complexity of initial-value problems in the randomized and quantum settings. For this purpose we define a sequence of new algorithms whose error/cost properties improve from step to step. These algorithms yield new upper complexity bounds, which differ from known lower bounds by only an arbitrarily small positive parameter in the exponent, and a logarithmic factor. In both the randomized and quantum settings, initial-value problems turn out to be essentially as difficult as scalar integration.  相似文献   

9.
We consider approximation by partial time steps of a smooth solution of the Navier-Stokes equations in a smooth domain in two or three space dimensions with no-slip boundary condition. For small k > 0, we alternate the solution for time k of the inviscid Euler equations, with tangential boundary condition, and the solution of the linear Stokes equations for time k, with the no-slip condition imposed. We show that this approximation remains bounded in H2,p and is accurate to order k in Lp for p > ∞. The principal difficulty is that the initial state for each Stokes step has tangential velocity at the boundary generated during the Euler step, and thus does not satisfy the boundary condition for the Stokes step. The validity of such a fractional step method or splitting is an underlying principle for some computational methods. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
In this paper a boundary theorem for Hilbert cube manifolds is established,where it is required that the boundary be put on the manifold with arbitrarily small control in a given compact metric parameter space.  相似文献   

11.
We consider the problem of optimal boundary displacement control (control minimizing the boundary energy functional) of an elastic rod consisting of several parts with different densities and elasticities but with the same impedances. We obtain a closed-form expression for the optimal control bringing the rod from an arbitrarily given initial state to an arbitrarily given terminal state in a given time T.  相似文献   

12.
We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non‐locally perturbed half‐plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound‐soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
The boundary controllability of the fourth order Schr(o)dinger equation in a bounded domain is studied.By means of an L2-Neumann boundary control,the authors prove that the solution is exactly controll...  相似文献   

14.
The paper presents a general approach to the paradox of Nicolai and related effects analyzed as a singularity of the stability boundary. We study potential systems with arbitrary degrees of freedom and two coincident eigenfrequencies disturbed by small non-conservative positional and damping forces. The instability region is obtained in the form of a cone having a finite discontinuous increase in the general case when arbitrarily small damping is introduced. This is a new destabilization phenomenon, which is similar to well-known Ziegler’s paradox or the effect of the discontinuous increase of the combination resonance region due to addition of infinitesimal damping. It is shown that only for specific ratios of damping coefficients, the system is stabilized due to presence of small damping. Then, we consider the paradox of Nicolai: the instability of a uniform axisymmetric elastic column loaded by axial force and a tangential torque of arbitrarily small magnitude. We extend the results of Nicolai showing that the column is stabilized by general small geometric imperfections and internal and external damping forces. It is shown that the paradox of Nicolai is related to the conical singularity of the stability boundary which transforms to a hyperboloid with the addition of small dissipation. As a specific example of imperfections, we study the case when cross-section of the column is changed from a circular to elliptic form.  相似文献   

15.
The paper presents a general approach to the paradox of Nicolai and related effects analyzed as a singularity of the stability boundary. We study potential systems with arbitrary degrees of freedom and two coincident eigenfrequencies disturbed by small non-conservative positional and damping forces. The instability region is obtained in the form of a cone having a finite discontinuous increase in the general case when arbitrarily small damping is introduced. This is a new destabilization phenomenon, which is similar to well-known Ziegler’s paradox or the effect of the discontinuous increase of the combination resonance region due to addition of infinitesimal damping. It is shown that only for specific ratios of damping coefficients, the system is stabilized due to presence of small damping. Then, we consider the paradox of Nicolai: the instability of a uniform axisymmetric elastic column loaded by axial force and a tangential torque of arbitrarily small magnitude. We extend the results of Nicolai showing that the column is stabilized by general small geometric imperfections and internal and external damping forces. It is shown that the paradox of Nicolai is related to the conical singularity of the stability boundary which transforms to a hyperboloid with the addition of small dissipation. As a specific example of imperfections, we study the case when cross-section of the column is changed from a circular to elliptic form.  相似文献   

16.
We construct compact hyperbolic 3-manifolds with totally geodesic boundary, arbitrarily many of the same volume. The fundamental groups of these 3-manifolds are groups with one defining relation. Our main result is a classification of these manifolds up to homeomorphism, resp. isometry.  相似文献   

17.
Martin Gugat  Michael Herty 《PAMM》2014,14(1):775-776
In the design and computation of optimal controls for systems that evolve in time, usually the effect of delay is ignored. However in the implementation of the computed optimal controls in the control systems often delays occur, for example through transmission via digital communication channels. The question to be addressed is whether such small delays can have large effects on a system that is steered by an optimal control. We show that for a system that is governed by the wave equation with L2-norm minimal exact Dirichlet boundary control, for arbitrarily small time-delays there are initial states such that the terminal energy is almost twice as big as the initial energy. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This paper is devoted to the study of the nonlinear stability of the composite wave consisting of a rarefaction wave and a viscous contact discontinuity wave of the non‐isentropic Navier–Stokes–Poisson system with free boundary. We first construct the composite wave through the quasineutral Euler equations and then prove that the composite wave is time asymptotically stable under small perturbations for the corresponding initial‐boundary value problem of the non‐isentropic Navier–Stokes–Poisson system. Only the strength of the viscous contact wave is required to be small. However, the strength of the rarefaction wave can be arbitrarily large. In our analysis, the domain decomposition plays an important role in obtaining the zero‐order energy estimates. By introducing this technique, we successfully overcome the difficulty caused by the critical terms involved with the linear term, which does not satisfy the quasineural assumption for the composite wave. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
We consider a boundary element (BE) Algorithm for solving linear diffusion desorption problems with localized nonlinear reactions. The proposed BE algorithm provides an elegant representation of the effect of localized nonlinear reactions, which enables the effects of arbitrarily oriented defect structures to be incorporated into BE models without having to perform severe mesh deformations. We propose a one-step recursion procedure to advance the BE solution of linear diffusion localized nonlinear reaction problems and investigate its convergence properties. The separation of the linear and nonlinear effects by the boundary integral formulation enables us to consider the convergence properties of approximations to the linear terms and nonlinear terms of the boundary integral equation separately. For the linear terms we investigate how the degree of piecewise polynomial collocation in space and the size of the spatial mesh relative to the time step affects the accumulation of errors in the one-step recursion scheme. We develop a novel convergence analysis that combines asymptotic methods with Lax's Equivalence Theorem. We identify a dimensionless meshing parameter θ whose magnitudé governs the performance of the one-step BE schemes. In particular, we show that piecewise constant (PWC) and piecewise linear (PWL) BE schemes are conditionally convergent, have lower asymptotic bounds placed on the size of time steps, and which display excess numerical diffusion when small time steps are used. There is no asymptotic bound on how large the tie steps can be–this allows the solution to be advanced in fewer, larger time steps. The piecewise quadratic (PWQ) BE scheme is shown to be unconditionally convergent; there is no asymptotic restriction on the relative sizes of the time and spatial meshing and no numerical diffusion. We verify the theoretical convergence properties in numerical examples. This analysis provides useful information about the appropriate degree of spatial piecewise polynomial and the meshing strategy for a given problem. For the nonlinear terms we investigate the convergence of an explicit algorithm to advance the solution at an active site forward in time by means of Caratheodory iteration combined with piecewise linear interpolation. We consider a model problem comprising a singular nonlinear Volterra equation that represents the effect of the term in the BE formulation that is due to a single defect. We prove the convergence of the piecewise linear Caratheodory iteration algorithm to a solution of the model problem for as long as such a solution can be shown to exist. This analysis provides a theoretical justification for the use of piecewise linear Caratheodory iterates for advancing the effects of localized reactions.  相似文献   

20.
The finite element method has been well established for numerically solving parabolic partial differential equations (PDEs). Also it is well known that a too large time step should not be chosen in order to obtain a stable and accurate numerical solution. In this article, accuracy analysis shows that a too small time step should not be chosen either for some time‐stepping schemes. Otherwise, the accuracy of the numerical solution cannot be improved or can even be worsened in some cases. Furthermore, the so‐called minimum time step criteria are established for the Crank‐Nicolson scheme, the Galerkin‐time scheme, and the backward‐difference scheme used in the temporal discretization. For the forward‐difference scheme, no minimum time step exists as far as the accuracy is concerned. In the accuracy analysis, no specific initial and boundary conditions are invoked so that such established criteria can be applied to the parabolic PDEs subject to any initial and boundary conditions. These minimum time step criteria are verified in a series of numerical experiments for a one‐dimensional transient field problem with a known analytical solution. The minimum time step criteria developed in this study are useful for choosing appropriate time steps in numerical simulations of practical engineering problems. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号