首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this letter, we present a novel class of arbitrarily high-order and unconditionally energy-stable algorithms for gradient flow models by combining the energy quadratization (EQ) technique and a specific class of Runge–Kutta (RK) methods, which is named the EQRK schemes. First of all, we introduce auxiliary variables to transform the original model into an equivalent system, with the transformed free energy a quadratic functional with respect to the new variables and the modified energy dissipative law is conserved. Then a special class of RK methods is employed for the reformulated system to arrive at structure-preserving time-discrete schemes. Along with rigorous proofs, numerical experiments are presented to demonstrate the accuracy and unconditionally energy-stability of the EQRK schemes.  相似文献   

2.
The numerical solution of the Euler equations requires the treatment of processes in different temporal scales. Sound waves propagate fast compared to advective processes. Based on a spatial discretisation on staggered grids, a multirate time integration procedure is presented here generalising split-explicit Runge-Kutta methods. The advective terms are integrated by a Runge-Kutta method with a macro stepsize restricted by the CFL number. Sound wave terms are treated by small time steps respecting the CFL restriction dictated by the speed of sound.Split-explicit Runge-Kutta methods are generalised by the inclusion of fixed tendencies of previous stages. The stability barrier for the acoustics equation is relaxed by a factor of two.Asymptotic order conditions for the low Mach case are given. The relation to commutator-free exponential integrators is discussed. Stability is analysed for the linear acoustic equation. Numerical tests are executed for the linear acoustics and the nonlinear Euler equations.  相似文献   

3.
This work deals with the convergence and stability of Runge–Kutta methods for systems of differential equation with piecewise continuous arguments x(t) = Px(t)+Qx([t+1∕2]) under two cases for coe?cient matrix. First, when P and Q are complex matrices, the su?cient condition under which the analytic solution is asymptotically stable is given. It is proven that the Runge–Kutta methods are convergent with order p. Moreover, the su?cient condition under which the analytical stability region is contained in the numerical stability region is obtained. Second, when P and Q are commutable Hermitian matrices, using the theory of characteristic, the necessary and su?cient conditions under which the analytic solution and the numerical solution are asymptotically stable are presented, respectively. Furthermore, whether the Runge–Kutta methods preserve the stability of analytic solution are investigated by the theory of Padé approximation and order star. To demonstrate the theoretical results, some numerical experiments are adopted.  相似文献   

4.
Traditionally, explicit numerical algorithms have not been used with stiff ordinary differential equations (ODEs) due to their stability. Implicit schemes are usually very expensive when used to solve systems of ODEs with very large dimension. Stabilized Runge‐Kutta methods (also called Runge–Kutta–Chebyshev methods) were proposed to try to avoid these difficulties. The Runge–Kutta methods are explicit methods with extended stability domains, usually along the negative real axis. They can easily be applied to large problem classes with low memory demand, they do not require algebra routines or the solution of large and complicated systems of nonlinear equations, and they are especially suited for discretizations using the method of lines of two and three dimensional parabolic partial differential equations. In Martín‐Vaquero and Janssen [Comput Phys Commun 180 (2009), 1802–1810], we showed that previous codes based on stabilized Runge–Kutta algorithms have some difficulties in solving problems with very large eigenvalues and we derived a new code, SERK2, based on sixth‐order polynomials. Here, we develop a new method based on second‐order polynomials with up to 250 stages and good stability properties. These methods are efficient numerical integrators of very stiff ODEs. Numerical experiments with both smooth and nonsmooth data support the efficiency and accuracy of the new algorithms when compared to other well‐known second‐order methods such as RKC and ROCK2. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

5.
朱方生 《数学杂志》1997,17(4):513-516
轨道预定路径控制问题,其数学模型是一个非线性的半显式微分/代数方程(DAE)系统。本文运用一类稳式Runge-Kutta方法求解指标2的DAT系统,并举例说明这类方法的有效性。  相似文献   

6.
In this paper we define an efficient implementation for the family of low-rank energy-conserving Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs), recently defined in the last years. The proposed implementation relies on the particular structure of the Butcher matrix defining such methods, for which we can derive an efficient splitting procedure. The very same procedure turns out to be automatically suited for the efficient implementation of Gauss-Legendre collocation methods, since these methods are a special instance of HBVMs. The linear convergence analysis of the splitting procedure exhibits excellent properties, which are confirmed by a few numerical tests.  相似文献   

7.
8.
In this paper we perform a stability analysis of a fully discrete numerical method for the solution of a family of Boussinesq systems, consisting of a Fourier collocation spectral method for the spatial discretization and a explicit fourth order Runge–Kutta (RK4) scheme for time integration. Our goal is to determine the influence of the parameters, associated to this family of systems, on the efficiency and accuracy of the numerical method. This analysis allows us to identify which regions in the parameter space are most appropriate for obtaining an efficient and accurate numerical solution. We show several numerical examples in order to validate the accuracy, stability and applicability of our MATLAB implementation of the numerical method.  相似文献   

9.
The problem of solving stochastic differential-algebraic equations (SDAEs) of index 1 with a scalar driving Wiener process is considered. Recently, the authors have proposed a class of stiffly accurate stochastic Runge–Kutta (SRK) methods that do not involve any pseudo-inverses or projectors for the numerical solution of the problem. Based on this class of approximation methods, classifications for the coefficients of stiffly accurate SRK methods attaining strong order 0.5 as well as strong order 1.0 are calculated. Further, the mean-square stability of the considered class of SRK methods is analyzed. As the main result, families of A-stable efficient order 0.5 and 1.0 stiffly accurate SRK methods with a minimal number of stages for SDEs as well as for SDAEs are presented.  相似文献   

10.
1 引  言本文将涉及多滞量线性微分方程系统y′(t)=By(t)+km=1Bmy(t-τm),t∈[t0,T],y(t)=φ(t),t∈[t0-τ,t0],(1.1)其中B=(bij),Bm=(b(m)ij)∈CN×N,0<τm≤τ(1≤m≤k),y(t)=(y1(t),y2(t),…,yN(t))T∈CN是未知函数.下文中恒设(1.1)有唯一充分光滑的解y(t),且其满足‖y(i)(t)‖≤Mi,  t∈[t0-τ,T],(1.2)这里‖·‖为CN中某内积〈·,·〉导出的范数,即‖ξ‖=〈ξ,ξ〉(ξ∈CN).文[1]中指出:当(1.1)的系数阵满足km=1‖Bm‖<-12λmax(B+B*)(1.3)时(其中矩阵范数‖·‖定义为:‖B‖=sup‖ξ‖=1‖Bξ‖,B∈CN×N),系统(1.1…  相似文献   

11.
We present a new class of efficient time integrators for solving linear evolution multidimensional problems of second‐order in time named Fractional Step Runge‐Kutta‐Nyström methods (FSRKN). We show that these methods, combined with suitable spliting of the space differential operator and adequate space discretizations provide important advantages from the computational point of view, mainly parallelization facilities and reduction of computational complexity. In this article, we study in detail the consistency of such methods and we introduce an extension of the concept of R‐stability for Runge‐Kutta‐Nyström methods. We also present some numerical experiments showing the unconditional convergence of a third order method of this class applied to resolve one Initial Boundary Value Problem of second order in time. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 597–620, 2012  相似文献   

12.
In this article, it is proved that explicit Lawson methods, when projected onto one of the invariants of nonlinear Schrödinger equation (norm) are also automatically projected onto another invariant (momentum) for many solutions. As this procedure is very cheap and geometric because two invariants are conserved, it offers an efficient tool to integrate some solutions of this equation till long times. On the other hand, we show a detailed study on the numerical performance of these methods against splitting ones, with fixed and variable stepsize implementation. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq31: 78–104, 2015  相似文献   

13.
本文涉及多步 Runge-Kutta方法关于多延迟微分方程系统的渐近稳定性 .在本文中我们证明了在适当条件下常微多步 Runge-Kutta方法的 A-稳定性等价于相应求解多延迟微分方程系统的GPk-稳定性 .  相似文献   

14.
15.
This paper deals with some relevant properties of Runge–Kutta (RK) methods and symplectic partitioned Runge–Kutta (PRK) methods. First, it is shown that the arithmetic mean of a RK method and its adjoint counterpart is symmetric. Second, the symplectic adjoint method is introduced and a simple way to construct symplectic PRK methods via the symplectic adjoint method is provided. Some relevant properties of the adjoint method and the symplectic adjoint method are discussed. Third, a class of symplectic PRK methods are proposed based on Radau IA, Radau IIA and their adjoint methods. The structure of the PRK methods is similar to that of Lobatto IIIA–IIIB pairs and is of block forms. Finally, some examples of symplectic partitioned Runge–Kutta methods are presented.  相似文献   

16.
Two‐derivative Runge‐Kutta methods are Runge‐Kutta methods for problems of the form y = f(y) that include the second derivative y = g(y) = f (y)f(y) and were developed in the work of Chan and Tsai. In this work, we consider explicit methods and construct a family of fifth‐order methods with three stages of the general case that use several evaluations of f and g per step. For problems with oscillatory solution and in the case that a good estimate of the dominant frequency is known, methods with frequency‐dependent coefficients are used; there are several procedures for constructing such methods. We give the general framework for the construction of methods with variable coefficients following the approach of Simos. We modify the above family to derive methods with frequency‐dependent coefficients following this approach as well as the approach given by Vanden Berghe. We provide numerical results to demonstrate the efficiency of the new methods using three test problems.  相似文献   

17.
18.
Error correction method (ECM)~\cite{kim2011a,kim2011b} which has been recently developed, is based on the construction of a local approximation to the solution on each time step, and has the excellent convergence order $O(h^{2p+2})$, provided the local approximation has a local residual error $O(h^p)$. In this paper, we construct a higher-order continuous local platform to develop higher-order semi-explicit one-step ECM for solving initial value time dependent differential equations. It is shown that special choices of parameters for the local platform can lead to the improvement of the well-known explicit fourth and fifth order Runge-Kutta methods. Numerical experiments demonstrate the theoretical results  相似文献   

19.
A weakly coupled convection dominated system of m-equations is analyzed. A higher order accurate asymptotic-numerical method is presented. The solutions of convection dominated problem are known to exhibit multi-scale character. There exist narrow region across the boundary of the domain where the solution exhibit steep gradient. This region is termed as boundary layer region and the solution of problem is said to have a boundary layer. Outside of this region, the solution of system behaves smoothly. To capture this multi-scale nature given system is factorized into two explicit systems. The degenerate system of initial value problems (IVPs), obtained by setting ??=?0, corresponds to the smooth solution, which lies outside of boundary layers. For solution inside boundary layers, a system of boundary value problems (BVPs) is obtained using stretching transformation. Regardless of this simple factorization, solutions of these systems preserve the key features of the given coupled system. Runge–Kutta method is used to solve the degenerate system of IVPs, whereas the system of BVPs is solved analytically. Stability and consistency of the proposed method is established. A uniform convergence of higher order is obtained. Possible extension to differential difference equations are also brought to attention. A comparative study of the present method with some state of art existing numerical schemes is carried out by means of several test problems. The results so obtained demonstrate the effectiveness and potential of present approach.  相似文献   

20.
Recently, Tarabia (Appl. Math. Model., 2008, 802) studied the steady-state probabilities of two parallel queues with jockeying and restricted capacities, using the matrix-analytical technique. In this paper, the differential–difference equations which describe the transient state case are derived. Using the fourth order Runge–Kutta method and randomization methods, transient-state probabilities of the Tarabia (2008) model are computed. It is shown that these two methods are closely related, but that the randomization method is superior to the Runge–Kutta method. In the transient case, a numerical comparison between Tarabia's model and Conolly's (J. Appl. Prob., 1984, 394) model is presented to highlight the effect of jockeying on the average of the queue length and the waiting time. Finally, some illustrative numerical results are provided, and conclusions are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号