首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The electrochemical behavior of RuS2 has been studied using cyclic voltammetry and Energy Dispersive X-ray Spectroscopy (EDX) techniques. Cyclic voltammograms reveal one major anodic peak and two major cathodic peaks on the reverse sweep; these peaks are attributed to the electroadsorption/desorption of OH? groups on the electrode surface. It is proposed that the electroadsorption of the OH? group on RuS2 is due to the presence of Ru 4d electrons in the uppermost part of the valence band. Thus, OH? is oxidized by holes on Ru 4d states in the first step. These groups are transferred to S22?sites in the second step. EDX surface analysis reveals preferential release of S22? from the pyrite lattice. A mechanism for the anodic dissolution of RuS2 is proposed, according to which elemental sulfur is not a direct product, but rather the end product which forms from thiosulfate.  相似文献   

2.
Systematic density functional theory studies and model analyses have been used to show that the band gap of iron pyrite (FeS(2)) can be increased from ~1.0 to 1.2-1.3 eV by replacing ~10% of the sulfur atoms with oxygen atoms (i.e., ~10% O(S) impurities). O(S) formation is exothermic, and the oxygen atoms tend to avoid O-O dimerization, which favors the structural stability of homogeneous FeS(2-x)O(x) alloys and frustrates phase separation into FeS(2) and iron oxides. With an ideal band gap, absence of O(S)-induced gap states, high optical absorptivity, and low electron effective mass, FeS(2-x)O(x) alloys are promising for the development of pyrite-based heterojunction solar cells that feature large photovoltages and high device efficiencies.  相似文献   

3.
FTIR spectra for the pyrite electrode/electrolyte interface at polarizations of –0.5 to 0.9 V (NHE) and pH 9.2 are obtained in situ for the first time and interpreted. A fundamentally new model for the pyrite oxidation in aqueous solutions is proposed on the basis of these data. According to the model, the oxidation occurs via an electrochemical (corrosion) mechanism. The cathodic half-reaction proceeds either on sulfur-deficient pyrite areas or FeS defects. The anodic half-reaction proceeds via a thiosulfate path, on areas of common pyrite characterized by the fixing of the Fermi level in a top portion of the valence band. The basic role of the oxidant consists of maintaining a high potential on anodic areas. The direct (chemical) oxidation of pyrite is an indirect effect and consists of an interaction with products of the anodic reaction. It is shown that the corrosion model, being free of contradictions inherent in previous models, explains some experimental facts left previously without any explanation. From this model follows an indirect mechanism of pyrite bioleaching.  相似文献   

4.
无烟煤型焦的成焦机理研究   总被引:1,自引:0,他引:1  
研究了不同煤阶无烟煤添加粘结剂冷压成型的型焦质量及其与粘结剂的成焦机理。利用X射线衍射光谱(XRD),电子顺磁共振(ESR)、孔结构,扫描电镜(SEM)等手段,对不同煤阶无工焦配料在加热过程中的微观结构变化进行了分析。  相似文献   

5.
Molecular beam surface scattering and X-ray absorption spectroscopic experiments were employed to study the reaction of deuterium atoms with a pyrite, FeS(2) (100), surface and to investigate the electronic and geometric structures of the resulting Fe-S phases. Incident D atoms, produced by a radiofrequency plasma and expanded in an effusive beam, were directed at a pyrite surface held at various temperatures from ambient up to 200 °C. During exposure to the D-atom beam, D(2)S products were released with a thermal distribution of molecular speeds, indicating that the D atoms likely reacted in thermal equilibrium with the surface. The yield of D(2)S from the surface decreased approximately exponentially with exposure duration, suggesting that the surface accessible sulfur atoms were depleted, thus leaving an iron-rich surface. This conclusion is consistent with X-ray absorption measurements of the exposed surfaces, which indicated the formation of a layered structure, with elemental iron as the outermost layer on top of a formally Fe((I))-S phase as an intermediate layer and a formally Fe((II))-S(2) bulk pyrite layer at lower depths. The reduced Fe((I))-S phase is particularly remarkable because of its similarity to the catalytically active sites of small molecule metalloenzymes, such as FeFe-hydrogenases and MoFe-nitrogenases.  相似文献   

6.
采用基于第一性原理的密度泛函理论结合周期平板模型方法, 研究了甲醇分子在FeS2(100)完整表面的吸附与解离. 通过比较不同吸附位置的吸附能和构型参数发现: 表面Fe位为有利吸附位, 甲醇分子通过氧原子吸附在表面Fe位, 吸附后甲醇分子中的C―O键和O―H键都有伸长, 振动频率发生红移; 甲醇分子易于解离成甲氧基CH3O和H, 表面Fe位仍然是二者有利吸附位. 通过计算得出甲醇在FeS2(100)表面解离吸附的可能机理: 甲醇分子首先发生O―H键的断裂, 生成甲氧基中间体, 继而甲氧基C―H键断裂, 得到最后产物HCHO和H2.  相似文献   

7.
石墨电极上硫化钠的阳极氧化机理探索   总被引:5,自引:0,他引:5  
电解硫化氢气体的碱性吸收液(Na2S表示)产生单质硫和氢气的研究是治理硫化氢废气的一种新方法[1 -7],较之Claus法有许多优点[3,4],这对环境保护和资源回收均具有重要的实际意义.文献对硫化物水溶液电化学氧化机理的研究主要着重于在某些贵金属阳极上,包括某些硫化矿的湿法冶金反应过程的研究[8,9],光电化学电池中使用多硫化物的研究[10 -13],以及硫化物电解时产生单质硫的电催化活性研究[14]等 ;但在石墨阳极上硫化物电化学氧化机理的研究报导却很少[3,4].本文研究在石墨阳极上硫化钠水溶液…  相似文献   

8.
Sulphide materials, in particular MoS(2), have recently received great attention from the surface science community due to their extraordinary catalytic properties. Interestingly, the chemical activity of iron pyrite (FeS(2)) (the most common sulphide mineral on Earth), and in particular its potential for catalytic applications, has not been investigated so thoroughly. In this study, we use density functional theory (DFT) to investigate the surface interactions of fundamental atmospheric components such as oxygen and nitrogen, and we have explored the adsorption and dissociation of nitrogen monoxide (NO) and nitrogen dioxide (NO(2)) on the FeS(2)(100) surface. Our results show that both those environmentally important NO(x) species chemisorb on the surface Fe sites, while the S sites are basically unreactive for all the molecular species considered in this study and even prevent NO(2) adsorption onto one of the non-equivalent Fe-Fe bridge sites of the (1 × 1)-FeS(2)(100) surface. From the calculated high barrier for NO and NO(2) direct dissociation on this surface, we can deduce that both nitrogen oxides species are adsorbed molecularly on pyrite surfaces.  相似文献   

9.
The ground states of FeS(2) and FeS(2)(-), and several low-lying excited electronic states of FeS(2) that are responsible for the FeS(2)(-) photoelectron spectrum, are calculated. At the B3LYP level an open, quasi-linear [SFeS](-) conformation is found as the most stable structure, which is confirmed at the ab initio CASPT2 computational level. Both the neutral and the anionic unsaturated complexes possess high-spin electronic ground states. For the first time a complete assignment of the photoelectron spectrum of FeS(2)(-) is proposed. The lowest energy band in this spectrum is ascribed to an electron detachment from the two highest-lying 3dpi antibonding orbitals (with respect to the iron-sulfur bonding) of iron. The next-lowest experimental band corresponds to an electron removal from nonbonding, nearly pure sulfur orbitals. The two highest bands in the spectra are assigned as electron detachments from pi and sigma bonding mainly sulfur orbitals.  相似文献   

10.
Thermal decomposition of ultrathin oxide layers on silicon surface was investigated with temperature programed desorption. Oxide layers were formed on Si(100) at 400 degrees C by exposure to O(2) molecular beam. Desorption spectrum for oxygen coverages between 1.7 and 2.6 ML exhibits a single dominant peak with an additional broad peak at lower temperatures. The former peak corresponds to stable binding states of O atoms at dimer bridge sites and dimer backbond sites. The high peak intensity indicates that most O atoms are at stable states. The latter peak corresponds to an unstable binding state, where O atoms are presumably trapped at dangling bonds. The SiO desorption rate from the stable binding states is well described by Avrami kinetics, suggesting that the decomposition process is spatially inhomogeneous with void formation and growth. The rate-determining step is the reaction at void perimeter even if the overlap between voids becomes quite large. The Avrami exponents determined from our experiment indicate that the increase in the initial coverage makes the oxide layer more stable and suppresses the rate of void formation at the potential nucleation sites.  相似文献   

11.
Alkaline water electrolysis despite having a variety of choices for anodic oxygen evolution reaction (OER) catalysts out of non-precious metals suffers significantly due to the poor kinetics of cathodic hydrogen evolution reaction (HER) even with the state-of-the-art Pt and equally active Ru. The Volmer-step (water dissociation (WD) coupled proton adsorption) of alkaline HER is mostly the rate-determining step (RDS) and costs most of the work required. In this review, recent developments in improving the HER kinetics of Pt and Ru with Volmer-step promotors and electronic structure modulators have been comprehensively analyzed and critically presented with the challenges and prospects.  相似文献   

12.
A review of the considerable, but often contradictory, literature examining the specific surface reactions associated with copper adsorption onto the common metal sulfide minerals sphalerite, (Zn,Fe)S, and pyrite (FeS(2)), and the effect of the co-location of the two minerals is presented. Copper "activation", involving the surface adsorption of copper species from solution onto mineral surfaces to activate the surface for hydrophobic collector attachment, is an important step in the flotation and separation of minerals in an ore. Due to the complexity of metal sulfide mineral containing systems this activation process and the emergence of activation products on the mineral surfaces are not fully understood for most sulfide minerals even after decades of research. Factors such as copper concentration, activation time, pH, surface charge, extent of pre-oxidation, water and surface contaminants, pulp potential and galvanic interactions are important factors affecting copper activation of sphalerite and pyrite. A high pH, the correct reagent concentration and activation time and a short time delay between reagent additions is favourable for separation of sphalerite from pyrite. Sufficient oxidation potential is also needed (through O(2) conditioning) to maintain effective galvanic interactions between sphalerite and pyrite. This ensures pyrite is sufficiently depressed while sphalerite floats. Good water quality with low concentrations of contaminant ions, such as Pb(2+)and Fe(2+), is also needed to limit inadvertent activation and flotation of pyrite into zinc concentrates. Selectivity can further be increased and reagent use minimised by opting for inert grinding and by carefully choosing selective pyrite depressants such as sulfoxy or cyanide reagents. Studies that approximate plant conditions are essential for the development of better separation techniques and methodologies. Improved experimental approaches and surface sensitive techniques with high spatial resolution are needed to precisely verify surface structures formed after copper activation. Sphalerite and pyrite surfaces are characterised by varying amounts of steps and defects, and this heterogeneity suggests co-existence of more than one copper-sulfide structure after activation.  相似文献   

13.
The different oxidation behavior of TiC and VC(100) surfaces by molecular oxygen has been investigated by density functional theory with a slab model. From the thermodynamic stability of the final states that involve dissociated O(2), one cannot well explain the experimental observations. Two different oxidation pathways of TiC and VC(100) surfaces have been explored in this work, and the results indicate that two channels share the same precursor state. However, from the precursor, only the pathway leading to the formation of a C-O bond is energetically feasible for the TiC(100) surface, while on VC(100) the O atoms tend to occupy the metal surface sites due to a smaller energy barrier for this channel. Further band structure calculations reveal that the additional d electron of V atom favors the stability of the molecularly adsorbed species. The oxidation mechanism unveiled from the present calculations clearly evidences that the kinetic effects introduced by one additional d electron of the V atom play a crucial role in explaining the different surface chemistry between TiC and VC (100) surfaces.  相似文献   

14.
An in situ XPS study of oxidation-reduction processes on three perovskite oxide electrode surfaces was carried out by incorporating the materials in an electrochemical cell mounted on a heated sample stage in an ultrahigh vacuum (UHV) chamber. Electrodes made of powdered LaCr(1-x)Ni(x)O(3-delta) (x = 0.4, 1) showed changes in the XPS features of all elements upon redox cycling between formal Ni3+ and Ni2+ oxidation stoichiometries, indicating the delocalized nature of the electronic states involved and strong mixing of O 2p to Ni 3d levels to form band states. The surface also showed changes in adsorption capacity for CO2 upon reduction as a result of increased nucleophilicity of surface oxygen. Another perovskite oxide, La(0.5)Sr(0.5)CoO(3-delta), laser deposited as highly oriented thin films on (100) oriented yttria-stabilized zirconia (YSZ), also showed evidence of both local and nonlocal effects in the XPS features upon redox cycling. In contrast to LaCr(1-x)Ni(x)O(3-delta), redox cycling mainly affected the XPS features of cobalt with little effect on oxygen. This signifies reduced participation of O 2p states in the conduction band of this material. Small changes in surface cation stoichiometry in this film were observed and attributed to mobility of the A-site Sr dopant under polarization.  相似文献   

15.
The femtosecond time evolutions of excited states in zinc phthalocyanine (ZnPC) films and at the interface with TiO2(110) have been studied by using time-resolved two-photon photoelectron spectroscopy (TR-2PPE). The excited states are prepared in the first singlet excited state (S1) with excess vibrational energy. Two different films are examined: ultrathin (monolayer) and thick films of approximately 30 A in thickness. The decay behavior depends on the thickness of the film. In the case of the thick film, TR-2PPE spectra are dominated by the signals from ZnPC in the film. The excited states decay with tau = 118 fs mainly by intramolecular vibrational relaxation. After the excited states cascaded down to near the bottom of the S1 manifold, they decay slowly (tau = 56 ps) although the states are located at above the conduction band minimum of the bulk TiO2. The exciton migration in the thick film is the rate-determining step for the electron transfer from the film to the bulk TiO2. In the case of the ultrathin film, the contribution of electron transfer is more evident. The excited states decay faster than those in the thick film, because the electron transfer competes with the intramolecular relaxation processes. The electronic coupling with empty bands in the conduction band of TiO2 plays an important role in the electron transfer. The lower limit of the electron-transfer rate was estimated to be 1/296 fs(-1). After the excited states relax to the states whose energy is below the conduction band minimum of TiO2, they decay much more slowly because the electron-transfer channel is not available for these states.  相似文献   

16.
汪海川  吴秉亮 《电化学》2004,10(4):379-383
应用脉冲电势调制技术,通过控制电极电势可将CO2还原为以吸附COads为主的中间物;之后再将电极电势阶跃到该物种能发生电化学氧化的电势,测量它的暂态氧化电流,得到积分电量Q随被测CO2浓度C的变化关系.对给定的还原时间,在CO2浓度为0.015%~20%的范围内,氧化电量Q与CO2浓度C有确定的对应关系.其中,当还原时间较短及CO2浓度较低情况下,两者有近似线性关系.这是一种可在较宽浓度范围内测定CO2的简便有效方法.  相似文献   

17.
Structural and electronic properties of (100)-oriented MgSO(4) and MgSO(4).H(2)O surfaces and the adsorption of water on the latter were investigated theoretically with a combination of ab initio and semiempirical methods. Ab initio electronic structure calculations were based on a density functional theory (DFT)-Hartree-Fock (HF) hybrid approach. The semiempirical method MSINDO was used for the determination of the local adsorption geometry of the water molecule. With the hybrid method good agreement was obtained with the experimental band gap of 7.4 eV determined with electron energy loss spectroscopy of polycrystalline MgSO(4).H(2)O samples under ultrahigh vacuum conditions. The valence bands of the (100) surfaces of both MgSO(4) and MgSO(4).H(2)O are formed mainly by the O2p levels, whereas the S2p states contribute to the lower part of the conduction band. The preferred adsorption site of water at MgSO(4).H(2)O (100) is above a surface Mg atom. The water molecule is stabilized by two additional hydrogen bonds with surface atoms. Only small differences between the electronic structure of MgSO(4).H(2)O and MgSO(4) were observed. Also, the molecular adsorption of water on the MgSO(4).H(2)O surface leads to only small shifts of the electronic energy levels.  相似文献   

18.
The anodic formation of Cu(I) and Cu(II) oxides on polycrystalline copper and copper-gold alloys (4 and 15 at% Au) in deoxygenated 0.1 M KOH was examined by voltammetry, chronoamperometry, and chronopotentiometry with a synchronous registration of photocurrent and photopotential, in situ spectroscopy of photocurrent as well as XPS and SEM measurements. The band gap of p-Cu2O is 2.2 eV for indirect optical transitions independent of the concentration of gold in Cu-Au alloy. It grows on CuOH or n-Cu2O underlayer. The increase of anodic potential results in a thickening of oxide film which is a mixture of Cu(I) and Cu(II) oxides. The latter is a p-type semiconductor with a low photosensitivity. The rate of oxide formation on the alloys is lower than on copper. The structure-dependent properties of the oxide phase on the alloys and copper are different. Copper is prone to corrosive oxidation even in deoxygenated alkaline solution by the traces of molecular oxygen. The corrosive growth of Cu(I) oxide film occurs according to the parabolic law. After the cathodic polarization, the surface of copper remains free of corrosive oxide no longer than 15–20 min. The preliminary anodic formation even of a thin Cu2O film as well as the alloying of copper with gold suppresses the corrosive oxidation of copper.  相似文献   

19.
《Electroanalysis》2018,30(8):1750-1756
Herein is described the development of a self‐powered sensor for gallic acid (GA) determination exploiting CdSe/ZnS quantum dot sensitized TiO2 nanoparticles (CdSe/ZnS/TiO2/FTO) as photoanode and an all copper oxide photocathode (CuO/Cu2O/FTO) to reduce water. A two‐chamber self‐powered photoelectrochemical cell was employed in order to maintain separated the photoelectrodes. The self‐powered photoelectrochemical cell is based on water reduction in the cathodic chamber while gallic acid acts as a hole scavenger in the anodic chamber to generate the necessary cell output to drive GA oxidation in the anodic compartment. Electrochemical impedance measurements were performed to evaluate the electronic characteristics of CdSe/ZnS/TiO2/FTO photoanode and CuO/Cu2O/FTO photocathode in terms of flat band potential, carrier density, and nature of semiconductor. Under optimized conditions, the self‐powered photoelectrochemical cell presented a wide linear response range for GA from 1 μmol L−1 up to 200 μmol L−1.  相似文献   

20.
The effect of Triton X-100 (nonionic surfactant) and cetyltrimethylammonium bromide (CTAB), cationic surfactant, on the mass transfer coefficient of the cathodic reduction of ferricyanide ions and anodic oxidation of ferrocyanide ions at hydrogen- and oxygen-evolving electrodes, respectively, was studied. It was found that the limiting current decreases by amounts ranging from 26.67 to 54.67% for Triton X-100 and from 20 to 46.0% for CTAB in the case of cathodic reduction of ferricyanide ions under natural convection at H2-evolving electrodes and from 23.81 to 51.43% for Triton X-100 and from 18.10 to 40.95% for CTAB in the case of anodic oxidation of ferrocyanide ions under natural convection at O2-evolving electrodes, depending on the concentration of surfactant. Also the effects of Triton X-100 and CTAB on the gas hold-up and cell voltage were studied. The presence of surfactant in electrolytes was found to decrease the mass transfer coefficient by an amount ranging from 5.37 to 95.9%, depending on the operating conditions. Gas hold-up, cell voltage, and power consumption were found to increase in the presence of surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号