首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using ESR (electron spin resonance) spectroscopy, we found various free radicals in a pepper before and after irradiation. The representative ESR spectrum of the pepper composed of a sextet centered at g=2.0, a singlet at the same g-value and a singlet at g=4.0. This reflects the evidence of three independent radicals in the pepper before irradiation. Upon gamma ray irradiation, a new pair of signals appeared. The progressive saturation behavior (PSB) at various microwave power levels indicates quite different relaxation behaviors of those signals. For the evaluation of radiation-induced radicals and irradiation effects we propose a new protocol using the PSB method. This would call for an advanced protocol for the detection of irradiated foods.  相似文献   

2.
Using electron spin resonance (ESR) spectroscopy, we revealed the presence of four radical species in gamma-ray irradiated ginseng (Agaliaceae). Before irradiation, the representative ESR spectrum of ginseng is composed of a sextet centered at g = 2.0, a sharp singlet at the same g-value, and a singlet at about g = 4.0. The first one is attributable to a hyperfine (hf) signal of Mn2+ ion (hf constant: 7.4 mT). The second one is due to an organic free radical. The third one is originated from Fe3+. Upon gamma-ray irradiation, a new ESR (the fourth) signal was detectable in the vicinity of g = 2.0 region. The progressive saturation behaviors of the ESR signals at various microwave power levels were indicative of different relaxation time for those radicals. The anisotropic ESR spectra were detected by the angular rotation of the sample tube. This is due to the existence of anisotropic microcrystalline in the ginseng powder sample.  相似文献   

3.
The ESR signals were successfully observed for the first time in dry vegetables (DVs) that are prominently used in oriental cuisines. We analyzed ESR signals of DV before and after irradiation. Before irradiation, the ESR signal of DV consisted of the three components: a singlet at g=2.0030, the sextet signals from Mn(2+) ion, and a singlet from Fe(3+). The first originated from a carbon centered organic free radical. The second is attributable to the sextet signal with hyperfine interactions of Mn(2+) ion centered at g=2.0020. The third is a singlet at g=4.0030 due to Fe(3+). After the gamma-ray irradiation, a new pair of signals, or twin peaks, appeared in the ESR spectrum of DV. The intensity of the organic free radical at g=2.0030 of the irradiated DV increased lineally with radiation doses. Progressive saturation behavior of the DV indicates a unique saturation and the signals obeyed various relaxation processes.  相似文献   

4.
We revealed free radicals in wheat flour before and after gamma-ray irradiation and their thermal behavior during heat-treatment using electron spin resonance (ESR) spectroscopy. The ESR spectrum of wheat flour before irradiation consists of a sextet centered at g = 2.0 and a singlet signal at the same g-value position. The first one is attributable to a signal with hyperfine (hf) interactions of Mn2+ ion (hf constant: 7.4 mT). The second is originated from carbon-centered radical. Upon gamma-ray irradiation, however, a new signal with two triplet lines at the low and high field ends was detected in wheat flour on top of the Mn2+ sextet lines. We analyzed the triplet ESR lines as powder spectra (rhombic g-tensor symmetry) with nitrogen (14N) hyperfine interactions. This indicates that a new organic radical was induced in the conjugated protein portion of wheat flour by the gamma-ray irradiation. Intensity of the organic free radical at g = 2.0 detected in irradiated wheat flour increased monotonically by the thermal treatment. The analysis of the time-dependent evolution and decay process based on the theory of transient phenomena as well as the nonlinear least-squares numerical method provided a unique time constant for the radical evolution and decay in wheat flour during the heat-treatment.  相似文献   

5.
This study shows the ESR spectra of oxoiron(IV) porphyrin pi-cation radicals of 1-8 in dichloromethane-methanol (5:1) mixture. We reported in a previous paper that oxoiron(IV) porphyrin pi-cation radicals of 1-4 are in an a(1u) radical state while those of 5-8 are in an a(2u) radical. The ESR spectra (g( perpendicular)(eff) approximately 3.1 and g( parallel)(eff) approximately 2.0) for the a(1u) radical complexes, 1-4, appear quite different from those reported previously for the oxoiron(IV) porphyrin pi-cation radical of 5 (g(y) = 4.5, g(x) = 3.6, and g(z) = 1.99). The unique ESR spectra of the a(1u) radical complexes rather resemble those of compound I from Micrococcus lysodeikticus catalase (CAT) and ascorbate peroxidase (ASP). This is the first examples to mimic the ESR spectra of compound I in the enzymes. From spectral analysis based on a spin Hamiltonian containing an exchange interaction, the ESR spectra of 1-4 can be explained as a moderate ferromagnetic state (J/D approximately 0.3) between ferryl S = 1 and the porphyrin pi-cation radical S' = (1)/(2). The magnitudes of zero-field splitting (D) for ferryl iron and isotropic J value, estimated from the temperature-dependence of the half-saturation power of the ESR signals, are approximately 28 and approximately +8 cm(-1), respectively. A change in the electronegativity of the beta-pyrrole substituent hardly changes the ESR spectral feature while that of the meso-substituent slightly does owing to the change in the E/D value. On the basis of the present ESR results, we propose the a(1u) radical state for compound I of CAT and ASP.  相似文献   

6.
Paramagnetic species produced in polycarbonate (PC) by γ- or ultraviolet irradiation were investigated by ESR. In γ-irradiation, scissions of carbonate groups in the main chain occur. ESR spectra (g = 2.0034) composed of a sharp singlet, some broad singlets, and a small signal with hyperfine structure are obtained, and they are assigned to trapped electrons, positive radical ions, phenoxy-type free radicals, phenyl radicals, and ? O? C6H4? C(CH3)2 radicals. The G value for total yields of paramagnetic species at 77°K is 1.8. The percentage of CO and CO2, the dominant gases evolved, is 65.4 and 33.8%, respectively. In ultraviolet irradiation, energy is absorbed selectively at the surface region. The surface region becomes insoluble in methylene chloride because of crosslinking of phenyl groups. The ESR spectrum obtained at 77°K is a broad singlet and assigned to phenoxy-type free radicals, phenyl radicals, and polyenyl-type free radicals. Some differences in effects of γ- and ultraviolet irradiation of PC are discussed.  相似文献   

7.
The plasma treatment of polytetrafluoroethylene (PTFE) films was carried out in a capacitively coupled reactor with external electrodes. The free radicals generated in the process of treatment were detected by ESR techniques. The ESR spectra tended to indicate that the free radicals of the pLasma-treated PTFE film sample were turned into peroxy radicals on exposure to air. The extrema separation (W) of the ESR spectrum of the peroxy radical increased with the lowering temperature and underwent a sudden change within the temperature range of 170 to 190K. The ESR spectrum observed at 77K was quite different from that observed at room temperature. Finally, the effects of treatment time, input power and system pressure on radical concentration of the treated samples were studied. The attenuation of the peroxy radical at room temperature was also investigated.  相似文献   

8.
Polyamide-1010 samples were irradiated in vacuum at room temperature by Cobalt-60 γ-rays. The free radicals formed in irradiation were studied by means of electron spin resonance (ESR)techniques.The ESRspectra consisted of a quartet and a superimposed singlet which were attributed to radical -CO-NH-CH-CH_2 and -CH_2-C=O, respectively. The effects of temperature and crystaUinity on the radicals were discussed and the mechanism for the production and decay of the radicals was also proposed.  相似文献   

9.
本文用自旋捕捉技术与ESR相结合的方法,研究了六种有机锡化合物的光解反应历程。结果表明:有机锡化合物紫外光照时,碳-锡键发生均裂,产生碳中心和锡中心自由基。其中碳中心自由基易被捕捉剂α-苯基-N-特丁基氮氧化物(PBN)或2,3,5,6-四甲基亚硝基苯(ND)所捕获;而锡中心自由基可与菲醌形成稳定的环状加合物。由于环状加合物中配体的不同,产生的空间效应也不同,从而导致加合物中的未偶电子云密度发生变化,给出相异的ESR信号。  相似文献   

10.
The ESR signals of bilirubin-IXα were studied including the samples treated with free radical generating and inhibiting systems, i.e.X-X0., Fe/EDTA, SOD, mannitol/ascorbate, DTPA, KCN et al.These stable signals all comprise those originated from a semiquinone radical(g=2.0012)and superoxide radical(g11=2.041, g=2.0040).The latter is shown to be bound with metal ionsespecially iron, chelated by bilirubin.The iron probably comes from bilirubin precursor---hemootobin.Active oxygen free radical scavengers may destroy these radicals.Kinetic curves of regeneration of the bilirubin radicals have been determined.Bilirubin is discussed as"active oxygen trap"in mammatians.  相似文献   

11.
Kinetic behaviors and characterization of the natural and γ-induced radicals in irradiated red pepper have been investigated by electron spin resonance (ESR) spectroscopy to explore the possibility of using this technique in detecting irradiated red pepper and to evaluate the eventual dosimetric features of this widely used food. Unirradiated samples exhibited a single resonance line centered at g=2.0050±0.0005. Photo-exposure of the samples was found to increase the signal intensity. An increase in temperature created a drastic decrease in the concentration of natural radicals responsible for the single resonance line. Irradiation was observed to induce increases in the intensity of single resonance line (signal I) and a radiation specific doublet and/or triplet (signal II) also centered at g=2.0050 but detectable only at high spectrometer gains. The intensities of both signals increased with increasing radiation dose. The signals I and II were found to decay with different rates depending on the temperature. The results of a fitting procedure applied to the experimental signal decay curves and those obtained from room temperature spectra simulation calculations were used together to determine radical species and their spectral characteristics giving rise to the observed experimental spectra. Four radical species, three carbohydrate and one semiquinone radical assigned as radicals A, B, C and D, respectively, were found to best explain the experimental results. All the radicals show large g and hyperfine splitting anisotropies varying between g=2.0028–2.0062 and 1.07–2.58 mT, respectively. The half lives of the radicals were found to depend strongly on temperature. The activation energy calculated using temperature dependent half-life data were the highest for radical A (33.68 kcal/mol) and smallest for radical C (11.83 kcal/mol).  相似文献   

12.
The photochromic ligand bis(terpyridyl)hexaarylbiimidazole (bistpy-HABI) and the Fe(II) complex of bistpy-HABI with formula [{Fe(tpy)}2.bistpy-HABI](PF6)4.4H2O were synthesized and characterized. Bistpy-HABI is readily cleaved into a pair of terpyridyltriphenylimidazolyl radicals (tpy-TPI*) on irradiation with UV light. This photochemical reaction is completely reversible, and the light-induced radicals can thermally recombine to form bistpy-HABI in the dark. [{Fe(tpy)}2.bistpy-HABI]4+ is the first example of a transition-metal complex of an HABI derivative and was found to show photochromic reaction in solution. The spin state of the light-induced radical pair in a frozen matrix was investigated by ESR spectroscopy. The triplet state of the light-induced radical pair from [{Fe(tpy)}2.bistpy-HABI]4+, as well as that from bistpy-HABI, was confirmed to be a ground state or nearly degenerated with a singlet state. Kinetic studies on the radical recombination reaction in solution elucidated the decrease in the activation energy by forming the Fe(II) complex. This is the first observation of a decrease in the activation energy of the radical recombination reaction by the formation of a metal-coordinated radical complex. The syntheses, photochemical properties, and spin states of bistpy-HABI and [{Fe(tpy)}2.bistpy-HABI](PF6)4 are discussed.  相似文献   

13.
Suspensions of Propionibacterium acnes were UV irradiated and the induced radicals were measured at 77 K by electron spin resonance (ESR) spectrometry. Two types of radical were formed during irradiation and stabilized in the frozen suspensions. The relative yield of each radical was studied as a function of irradiation wavelength. The first radical, which was a singlet with a peak-to-peak width of 20 G, was insensitive to the deoxygenation of the samples and to the exchange of solvent water by heavy water. The action spectrum was similar to the absorption spectrum of NADPH. The second type of radical was not formed in deoxygenated samples and the shape of the ESR spectrum was characteristic of the superoxide radical. This radical was only formed at wavelengths below 340 nm.  相似文献   

14.
The contact recombination from both singlet and triplet states of a radical pair is studied assuming that the spin conversion is carried out by the fast transversal relaxation and Delta g mechanism. The alternative HFI mechanism is neglected as being much weaker in rather large magnetic fields. The magnetic-field-dependent quantum yields of the singlet and triplet recombination products, as well as of the free radical production, are calculated for any initial spin state and arbitrary separation of radicals in a pair. The magnetic field effect is traced and its diffusional (viscosity) dependence is specified.  相似文献   

15.
Poly-3,3-bis(chloromethyl)oxetane (poly-BCMO) was irradiated at ?196°C with electron beams and ultraviolet light, and observed ESR spectra were compared. A three-line spectrum (coupling constant of about 21 gauss) and a two-line spectrum (coupling constant of about 18 gauss) were observed after irradiation with electron beams in vacuo. They were attributed to free radicals and respectively. On the other hand, a three-line spectrum (coupling constant of about 20 gauss) and an asymmetric singlet spectrum were observed after ultraviolet irradiation in vacuum. They were assigned to free radicals and ? CH2? O·, respectively. Mechanisms of radical formation were discussed in each case. When poly-BCMO was irradiated with electron beams at ?196°C in the presence of air, peroxy radicals were produced after subsequent treatment at ?78°C. The reaction between alkyl radicals and oxygen molecules was found to be diffusion-controlled.  相似文献   

16.
The photoreaction of the solution system of naphthalene and 2,6-di-tert-butyl-p-cresol was investigated by a combination of optical spectroscopy, ESR and time-resolved CIDEP techniques. ESR signal of 2,6-di-tert-butyl-4-methylphenoxy radical was detected during 308 nm irradiation. Three different types of polarization mechanisms contribute to the CIDEP of the phenoxy radicals. In the initial stage RPM with singlet precursor predominates, whereas RPM with F-pairtnplet precursor persists at later stage. The contribution from TM is superimposed during all the time regions but to a small extent. Both the CIDEP intensity at the initial stage as well as the depletion rate of naphthalene during photolysis were found to be proportional to the square of the light intensity, which indicates that most phenoxy radicals were produced via a biphotonic process.  相似文献   

17.
Free radicals in crosslinked PTFE which formed by 60Co γ-rays irradiaion at 77 K and at room temperature were studied by electron spin resonance (ESR) spectroscopy. The crosslinked PTFE specimens with different crosslinking density were prepared by electron beam irradiation in the molten state. The ESR spectra observed in the irradiated crosslinked PTFE are much different from those in non-crosslinked PTFE (virgin); a broad singlet component increases with increasing the crosslinking density, G-value of radicals is much higher in crosslinked PTFE than in non-crosslinked one. Free radicals related to the broad component are trapped in the non-crystalline region of crosslinked PTFE and rather stable at room temperature, whereas radicals trapped in amorphous non-crosslinked PTFE are unstable at room temperature. It is thought that most of free radicals trapped in the crosslinked PTFE are formed in the crosslinked amorphous region. The trapped radicals decays around 383 K (110°C) due to the molecular motion of -relaxation.  相似文献   

18.
The double-channel recombination and separation of the photochemically created singlet radical pair is investigated, taking into account the spin conversion in a zero magnetic field and the arbitrary initial distance between the radicals. The quantum yields of the singlet and triplet products and the free radicals production are found analytically, assuming that the recombination of the diffusing radicals occurs at contact. All the yields are related to the singlet and triplet populations of the recombining radical pair, subjected to spin conversion and contact exchange interaction. The general analytical expressions for the quantum yields are specified for the particular limits of the weak and strong exchange. They are greatly simplified in the case of polar solvents, especially at the contact start. A close similarity is obtained with the results of a previously developed incoherent model of spin conversion, provided that the conversion rate is appropriately related to the hyperfine coupling constant.  相似文献   

19.
The aim of this work was to compare the gamma radiation induced effects on samples of an ethylene-propylene copolymer antioxidant free with samples loaded with an antioxidant characterised by the presence of an -NH functional group. The employed techniques were Electron Spin Resonance spectroscopy (ESR) and High Performance Liquid Chromatography (HPLC). Stable radicals R---NO° due to the interaction of free radicals produced in the irradiated polymer with the antioxidant have been observed by ESR at room temperature. The time evolution of the ESR signals following the irradiation was examined at different doses. The amount of antioxidant not involved in the oxidation reactions has been determined using HPLC.  相似文献   

20.
Free radicals/reactive oxygen species (ROS) generated in skin by UV irradiation were measured by electron spin resonance (ESR). To increase the sensitivity of measurement the short life free radicals/ROS were scavenged and accumulated by using the nitroxyl probe 3-carboxy-2,2,5,5-tetrametylpyrrolidine-1-oxyl (PCA). The spatial distribution of free radicals/ROS measured in pig skin biopsies with ESR imaging after UV irradiation corresponds to the intensity decay of irradiance in the depth of the skin. The main part of free radicals/ROS were generated by UVA (320-400 nm) so that the spatial distribution of free radicals reaches up to the lower side of the dermis. In vivo measurements on human skin were performed with a L-band ESR spectrometer and a surface coil integrating the signal intensities from all skin layers to get a sufficient signal amplitude. Using this experimental arrangement the protection of UVB and UVA/B filter against the generation of free radicals/ROS in skin were measured. The protection against ROS and the repair of damages caused by them can be realized with active antioxidants characterized by a high antioxidative power (AP). The effect of UV filter and antioxidants corresponding to their protection against free radicals/ROS in skin generated by UVAB irradiation can be quantified by the new radical sun protection factor (RSF). The RSF indicates the increase of time for staying in the sun to generate the same number of free radicals/ROS in the skin like for the unprotected skin. Regarding the amount of generated free radicals/ROS in skin as an biophysical endpoint the RSF characterizes both the protection against UVB and UVA radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号