首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetracycline (Tc) is an important antibiotic, which binds specifically to the ribosome and several proteins, in the form of a Tc-:Mg2+ complex. To model Tc:protein and Tc:RNA interactions, we have developed a molecular mechanics force field model of Tc, which is consistent with the CHARMM force field for proteins and nucleic acids. We used structures from the Cambridge Crystallographic Data Base to identify the main Tc conformations that are likely to be present in solution and in biomolecular complexes. A conformational search was also done, using the MM3 force field to perform simulated annealing of Tc. Several resulting, low-energy structures were optimized with an ab initio model and used in developing the new Tc force field. Atomic charges and Lennard-Jones parameters were derived from a supermolecule ab initio approach. We considered the ab initio energies and geometries of a probe water molecule interacting with Tc at 36 different positions. We considered both a neutral and a zwitterionic Tc form, with and without bound Mg2+. The final rms deviation between the ab initio and force field energies, averaged over all forms, was just 0.35 kcal/mol. The model also reproduces the ab initio geometry and flexibility of Tc. As further tests, we did simulations of a Tc crystal, of Tc:Mg2+ and Tc:Ca2+ complexes in aqueous solution, and of a solvated complex between Tc:Mg2+ and the Tet repressor protein (TetR). With slight, ad hoc adjustments, the model can reproduce the experimental, relative, Tc binding affinities of Mg2+ and Ca2+. It performs well for the structure and fluctuations of the Tc:Mg2+:TetR complex. The model should therefore be suitable to investigate the interactions of Tc with proteins and RNA. It provides a starting point to parameterize other compounds in the large Tc family.  相似文献   

2.
Proteins govern most aspects of cellular life and, through specific interfaces, are typically involved in intricate protein–protein interaction (PPI) networks and signaling pathways. Subtle up- or downregulation of key protein functions and PPIs results in disease; still, the preferred option to contrast the role of a protein in disease and healthy conditions alike remains its outright shutdown through orthosteric ligands that block its active site. Here, we explore subtler alternatives to modulate proteins and PPIs. Driven by a view of proteins as dynamic entities, we discuss ways to identify allosteric binding sites, which, when targeted by tailored ligands, can induce significant changes in the active site of a protein, and lead to agonistic or antagonistic effects. We also summarize the selective regulation of specific PPIs—either direct or allosteric—and show that effects can be stabilizing as well as destabilizing, depending on how the conformational equilibrium of a protein is shifted.  相似文献   

3.
The physical properties of a diverse group of 12 oxocarbenium ions have been studied with ab initio calculations at the MP2/6‐31+G* level of theory. Based on theoretically derived properties such as molecular equilibrium geometry, dipole moment, and vibrational frequencies, a molecular mechanics (MM3) force field has been developed with the assistance of the programs TORSMART and MPMSR, components of our artificial parameter development and refinement method. The MM3 force field is now able to reproduce bond lengths, bond angles, moments of inertia, dipole moments, torsional energy profiles, and vibrational frequencies of oxocarbenium ions, which will allow further studies of glycoside hydrolysis and their rates of reaction. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 329–339, 2000  相似文献   

4.
5.
Imatinib is an important anticancer drug, which binds specifically to the Abl kinase and blocks its signalling activity. To model imatinib:protein interactions, we have developed a molecular mechanics force field for imatinib and four close analogues, which is consistent with the CHARMM force field for proteins and nucleic acids. Atomic charges and Lennard‐Jones parameters were derived from a supermolecule ab initio approach. We considered the ab initio energies and geometries of a probe water molecule interacting with imatinib fragments at 32 different positions. We considered both a neutral and a protonated imatinib. The final RMS deviation between the ab initio and force field energies, averaged over both forms, was 0.2 kcal/mol. The model also reproduces the ab initio geometry and flexibility of imatinib. To apply the force field to imatinib:Abl simulations, it is also necessary to determine the most likely imatinib protonation state when it binds to Abl. This was done using molecular dynamics free energy simulations, where imatinib is reversibly protonated during a series of MD simulations, both in solution and in complex with Abl. The simulations indicate that imatinib binds to Abl in its protonated, positively‐charged form. To help test the force field and the protonation prediction, we did MD free energy simulations that compare the Abl binding affinities of two imatinib analogs, obtaining good agreement with experiment. Finally, two new imatinib variants were considered, one of which is predicted to have improved Abl binding. This variant could be of interest as a potential drug. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

6.
The widely used CHARMM additive all‐atom force field includes parameters for proteins, nucleic acids, lipids, and carbohydrates. In the present article, an extension of the CHARMM force field to drug‐like molecules is presented. The resulting CHARMM General Force Field (CGenFF) covers a wide range of chemical groups present in biomolecules and drug‐like molecules, including a large number of heterocyclic scaffolds. The parametrization philosophy behind the force field focuses on quality at the expense of transferability, with the implementation concentrating on an extensible force field. Statistics related to the quality of the parametrization with a focus on experimental validation are presented. Additionally, the parametrization procedure, described fully in the present article in the context of the model systems, pyrrolidine, and 3‐phenoxymethylpyrrolidine will allow users to readily extend the force field to chemical groups that are not explicitly covered in the force field as well as add functional groups to and link together molecules already available in the force field. CGenFF thus makes it possible to perform “all‐CHARMM” simulations on drug‐target interactions thereby extending the utility of CHARMM force fields to medicinally relevant systems. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

7.
Medium-sized nitrogen-containing heterocycles have considerable potential as structurally novel templates for new medicinal agents. In order to evaluate this potential and to investigate their binding to various target receptors, satisfactory modeling of the properties of such compounds with force-field based computational methods is required, especially the conformations accessible to the molecules at and around their global minimum conformation. This is currently only possible with selected force fields for compounds that show a special intramolecular interaction such as the transannular interaction between a basic nitrogen atom and a carbonyl carbon atom. This article substantiates this claim and discusses two approaches to modify the commercially available CFF91 force field. The different approaches are discussed and assessed by their performance in reproducing the conformation in the crystal for a series of known model compounds. In summary, very good agreement with the experimental structure is achieved. The modified force fields are then used to investigate a potentially bioactive lead compound. The lead compound is predicted to be able to mimic the shape of a fused-ring compound with biological activity. © 1997 John Wiley & Sons, Inc. J Comput Chem 18: 1211–1221  相似文献   

8.
A new molecular mechanics force field has been developed that takes into account the fact that, upon coordination to a transition metal ion, the redistribution of electron density leads to small but significant structural changes in the organic backbone of the ligand. Structural studies indicate that the perturbation by coordination to a metal ion extends to the α-carbon atom of the donor, the perturbation is roughly independent of the metal center for M2+ and M3+ and negligible for M+, and the perturbation of the Cα(SINGLE BOND)Cα′ bond is roughly independent of the donor atom. New parameter sets for oxalates, imidazoles, and pyrazoles are also presented. The refined parameters have been validated with a large number of monodentate, multidentate, and macrocyclic ligands. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 512–523, 1998  相似文献   

9.
陈景飞  郝京诚 《化学进展》2012,(10):1890-1896
分子动力学模拟技术目前已经成为了研究表面活性剂有序聚集体的不可或缺的工具之一。近几年来,粗粒化模拟方法克服了传统的介观模拟和精细力场模拟的缺点,既能够重现自组装体系的热力学或者结构方面的信息,又极大地拓展了模拟体系所能达到的空间和时间尺度,逐渐成为了计算领域的一个热点。本文综述了近几年来表面活性剂粗粒化分子动力学模拟的最新发展状况,分别就不同粗粒化模型的建模策略、作用势能表达、参数拟合和模型评价等问题作了详细的介绍,并通过实例说明了粗粒化力场对表面活性剂体系的适用性。在此基础上,指出了发展粗粒化力场过程中所面临的一些关键性问题,这对于表面活性剂溶液行为的粗粒化模拟具有重要的意义。  相似文献   

10.
The Thole induced point dipole model is combined with three different point charge fitting methods, Merz–Kollman (MK), charges from electrostatic potentials using a grid (CHELPG), and restrained electrostatic potential (RESP), and two multipole algorithms, distributed multipole analysis (DMA) and Gaussian multipole model (GMM), which can be used to describe the electrostatic potential (ESP) around molecules in molecular mechanics force fields. This is done to study how the different methods perform when intramolecular polarizability contributions are self‐consistently removed from the fitting done in the force field parametrization. It is demonstrated that the polarizable versions of the partial charge models provide a good compromise between accuracy and computational efficiency in describing the ESP of small organic molecules undergoing conformational changes. For the point charge models, the inclusion of polarizability reduced the the average root mean square error of ESP over the test set by 4–10%. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Flavin containing molecules form a group of important cofactors that assist a wide range of enzymatic reactions. Flavins use the redox-active isoalloxazine system, which is capable of one- and two-electron transfer reactions and can exist in several protonation states. In this work, molecular mechanics force field parameters compatible with the CHARMM36 all-atom additive force field were derived for biologically important flavins, including riboflavin, flavin mononucleotide, and flavin adenine dinucleotide. The model was developed for important protonation and redox states of the isoalloxazine group. The partial charges were derived using the CHARMM force field parametrization strategy, where quantum mechanics water–solute interactions are used to target optimization. In addition to monohydrate energies and geometries, electrostatic potential around the compound was used to provide additional restraints during the charge optimization. Taking into account the importance of flavin-containing molecules special attention was given to the quality of bonded terms. All bonded terms, including stiff terms and torsion angle parameters, were parametrized using exhaustive potential energy surface scans. In particular, the model reproduces well the butterfly motion of isoalloxazine in the oxidized and reduced forms as predicted by quantum mechanics in gas phase. The model quality is illustrated by simulations of four flavoproteins. Overall, the presented molecular mechanics model will be of utility to model flavin cofactors in different redox states. © 2019 Wiley Periodicals, Inc.  相似文献   

12.
王进  王军霞  曾凡桂  吴秀玲 《化学学报》2010,68(16):1653-1660
利用分子力场和分子动力学(MD)的方法研究了Li-蒙脱石的结构构型, 层间阳离子的水化行为、水分子的结构特征以及它们的扩散性质. 分子力场构型优化结果表明: Li-蒙脱石的层间距、体积和密度与层间水含量有关; MD模拟的动画轨迹显示Li-蒙脱石层间Li的位置与层间电荷位置有关. 均方根位移和自扩散系数的计算结果表明: 层间阳离子、水分子在Li-蒙脱石一、二层水合物中的扩散受到上下粘土片表面的限制, 在三层水合物中开始离开粘土层面向其它方向快速扩散. 径向分布函数及其结构因子的分析结果表明Li在一、二、三层水合物中有不同的水合层; 层间水分子的结构特征说明其在蒙脱石层间有水合水分子和自由水分子之分, 且它们的比值在一、二和三层水合物中有所不同.  相似文献   

13.
We comprehensively illustrate a general process of fitting all‐atom molecular mechanics force field (FF) parameters based on quantum mechanical calculations and experimental thermodynamic data. For common organic molecules with free dihedral rotations, this FF format is comprised of the usual bond stretching, angle bending, proper and improper dihedral rotation, and 1–4 scaling pair interactions. An extra format of 1–n scaling pair interaction is introduced when a specific intramolecular rotation is strongly hindered. We detail how the preferred order of fitting all intramolecular FF parameters can be determined by systematically generating characteristic configurations. The intermolecular Van der Waals parameters are initially taken from the literature data but adjusted to obtain a better agreement between the molecular dynamics (MD) simulation results and the experimental observations if necessary. By randomly choosing the molecular configurations from MD simulation and comparing their energies computed from FF parameters and quantum mechanics, the FF parameters can be verified self‐consistently. Using an example of a platform chemical 3‐hydroxypropionic acid, we detail the comparison between the new fitting parameters and the existing FF parameters. In particular, the introduced systematic approach has been applied to obtain the dihedral angle potential and 1–n scaling pair interaction parameters for 48 organic molecules with different functionality. We suggest that this procedure might be used to obtain better dihedral and 1–n interaction potentials when they are not available in the current widely used FF. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
15.
计算机化学模拟—分子构象识别的新方法   总被引:8,自引:1,他引:8  
王瑾玲  孙命  缪方明 《结构化学》2000,19(4):281-287
简介了几种利用计算机图形技术研究化合物分子构象的新方法。重点介绍了分子力学计算方法中的系统搜索、随机搜索方法和分子动力学计算方法中的模拟淬火、模拟退火等新技术 ,为药物分子设计中受体与配体分子构象的识别提供了合理可行的方法。  相似文献   

16.
17.
The aggregation behaviors of two trisiloxane-tailed surface active ionic liquids in water have been investigated by coarse-grained (CG) molecular dynamics simulation on the basis of MARTINI force field. The new CG model is developed from the optimized molecule computed by using density functional theory. Direct comparison of angles and bonds obtained from all-atom (AA) simulations with those calculated from the CG model has been conducted to validate the latter model. Excellent agreement between AA and CG demonstrates that the potential of the new CG model can represent the complex system well. The long time CG simulation has been performed to understand the formation process of micelles when dissolving ionic liquids in water. Vesicles were observed at the final stage of the simulation and their partially truncated views and density profiles were obtained to describe the structure in detail.  相似文献   

18.
19.
Novel single-molecule fluorescence experimental techniques have prompted a growing need to develop refined computational models of dye-tagged biomolecules. As a necessary first step towards useful molecular simulations of fluorescence-labeled biomolecules, we have derived a force field for the commonly used dye, rhodamine 6G (R6G). A novel automated method is used that includes fitting the molecular mechanics potential to both vibrational frequencies and eigenvector projections derived from quantum chemical calculations. The method is benchmarked on a series of aromatic molecules then applied to derive new parameters for R6G. The force field derived reproduces well the crystal structure of R6G.  相似文献   

20.
Computational studies of proteins based on empirical force fields represent a powerful tool to obtain structure-function relationships at an atomic level, and are central in current efforts to solve the protein folding problem. The results from studies applying these tools are, however, dependent on the quality of the force fields used. In particular, accurate treatment of the peptide backbone is crucial to achieve representative conformational distributions in simulation studies. To improve the treatment of the peptide backbone, quantum mechanical (QM) and molecular mechanical (MM) calculations were undertaken on the alanine, glycine, and proline dipeptides, and the results from these calculations were combined with molecular dynamics (MD) simulations of proteins in crystal and aqueous environments. QM potential energy maps of the alanine and glycine dipeptides at the LMP2/cc-pVxZ//MP2/6-31G* levels, where x = D, T, and Q, were determined, and are compared to available QM studies on these molecules. The LMP2/cc-pVQZ//MP2/6-31G* energy surfaces for all three dipeptides were then used to improve the MM treatment of the dipeptides. These improvements included additional parameter optimization via Monte Carlo simulated annealing and extension of the potential energy function to contain peptide backbone phi, psi dihedral crossterms or a phi, psi grid-based energy correction term. Simultaneously, MD simulations of up to seven proteins in their crystalline environments were used to validate the force field enhancements. Comparison with QM and crystallographic data showed that an additional optimization of the phi, psi dihedral parameters along with the grid-based energy correction were required to yield significant improvements over the CHARMM22 force field. However, systematic deviations in the treatment of phi and psi in the helical and sheet regions were evident. Accordingly, empirical adjustments were made to the grid-based energy correction for alanine and glycine to account for these systematic differences. These adjustments lead to greater deviations from QM data for the two dipeptides but also yielded improved agreement with experimental crystallographic data. These improvements enhance the quality of the CHARMM force field in treating proteins. This extension of the potential energy function is anticipated to facilitate improved treatment of biological macromolecules via MM approaches in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号