首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The adsorption of H 2O, alcohols (CH 3OH and 1-octanol), and carboxylic acids (formic, acetic, and pentanoic) on beta-Ga 2O 3 nanoribbons has been studied using infrared reflection-absorption spectroscopy (IRRAS) and/or ab initio computational modeling. Adsorption energies and geometries are sensitive to surface structure, and hydrogen bonding plays a significant role in stabilizing adsorbed species. On the more stable (100)-B surface, computation shows that the physisorption of H 2O or CH 3OH is weakly exothermic whereas chemisorption via O-H bond dissociation is weakly endothermic. Experiment finds that a large fraction of a saturation coverage of adsorbed 1-octanol is displaced by exposure to acetic acid vapor. This is consistent with computational results showing that acids adsorb more strongly than methanol on this surface. The remaining alcohol, not displaced by acetic acid, suggests the presence of defects and/or (100)-A regions because computation shows that this less-stable surface adsorbs methanol more strongly than does the (100)-B. The nu(C-H) modes of adsorbed 1-octanol are easily detected whereas no adsorbed H 2O is observed even though H 2O and CH 3OH exhibit similar adsorption energies. It is inferred from this that the failure to detect H 2O on the dominant (100)-B surface results from the orientation of the physisorbed H 2O essentially parallel to the surface. Computation shows that this configuration is stabilized by H bonding. For chemisorbed formic acid, computation shows that a bridging carboxylate structure is favored over a bidentate or monodentate configuration. Computation also shows that chemisorption is favored on the (100)-A surface but physisorption is favored on the more stable (100)-B. Analysis of IRRAS data for acetic and pentanoic acids finds evidence for both types of adsorption. The carboxylate resists displacement by H 2O vapor, which suggests that carboxylic acids may be useful for functionalizing beta-Ga 2O 3 surfaces. The results provide insight into the interplay between surface structure and reactivity on an oxide surface and about the importance of hydrogen bonding in determining adsorbate structure.  相似文献   

2.
We present density functional theory calculations and first-principles molecular dynamics simulations of formic acid adsorption on anatase TiO(2)(001), the minority surface exposed by anatase TiO(2) nanoparticles. A wide range of factors that may affect formic acid adsorption, such as coverage, surface hydration, and reconstruction, are considered. It is found that (i) formic acid dissociates spontaneously on unreconstructed clean TiO(2)(001)-1 x 1, as well as on the highly reactive ridge of the reconstructed TiO(2)(001)-1 x 4 surface; (ii) on both the 1 x 1 and 1 x 4 surfaces, various configurations of dissociated formic acid exist with adsorption energies of about 1.5 eV, which very weakly depend on the coverage; (iii) bidentate adsorption configurations, in which the formate moiety binds to the surface through two Ti-O bonds, are energetically more favored than monodentate ones; (iv) partial hydration of TiO(2)(001)-1 x 1 tends to favor the bidentate chelating configuration with respect to the bridging one but has otherwise little effect on the adsorption energetics; and (v) physical adsorption of formic acid on fully hydrated TiO(2)(001)-1 x 1 is also fairly strong. Comparison of the present results for formic acid adsorption with those for water and methanol under similar conditions provides valuable insights to the understanding of recent experimental results concerning the coadsorption of these molecules.  相似文献   

3.
Ammonium-ion-exchanged alpha-Zr(HPO(4))(2)H(2)O (alpha-ZrP) was obtained as a single phase with the interlayer distance of 9.4 A by the ion-exchange of proton with ammonium ion. The ammonium ion-exchanged alpha-ZrP could adsorb ill-smelling gases, such as formaldehyde and carboxylic acids (formic acid, acetic acid, propionic acid, and butyric acid). The adsorption amounts of carboxylic acids increased in the order, butyric acid相似文献   

4.
用密度泛函理论(DFT)的B3-LYP方法和原子簇模型研究了碘和修饰银(110)表面对甲醇吸附的影响。结果表明,甲醇分子在干净的银表面吸附很弱甚至不吸附,但在氧或碘修饰过的银表面上,由于预吸附导致吸附能的增加而变得容易吸附。并进一步采用目前较新的映像电荷模型计算验证了在甲醇部分氧化制甲醛反应中氧或碘对银催化剂表面修饰的本质是电荷修饰这一推论,为实验中如何筛选修饰提供了良好的判据。  相似文献   

5.
第一性原理计算研究发现由于二维TiC单原子层具有高的比表面积与大量的暴露在表面的Ti原子,其是一种非常有潜力的储氢材料.计算结果显示H2可以在二维TiC单原子层表面进行物理吸附与化学吸附.其中化学吸附能为每个氢分子0.36 eV,物理吸附能是每个氢分子0.09 eV.覆盖度为1和1/4层(ML)时,H2分子在二维TiC单原子层表面的离解势垒分别为1.12和0.33 eV.因此,除了物理吸附与化学吸附,TiC表面还存在H单原子吸附.最大的H2储存率可以达到7.69%(质量分数).其中,离解的H原子、化学吸附的H2、物理吸附的H2的储存率分别为1.54%、3.07%、3.07%.符合Kubas吸附特征的储存率为3.07%.化学吸附能随覆盖度的变化非常小,这有利于H2分子的吸附与释放.  相似文献   

6.
第一性原理计算研究发现由于二维TiC 单原子层具有高的比表面积与大量的暴露在表面的Ti 原子,其是一种非常有潜力的储氢材料. 计算结果显示H2可以在二维TiC 单原子层表面进行物理吸附与化学吸附. 其中化学吸附能为每个氢分子0.36 eV,物理吸附能是每个氢分子0.09 eV. 覆盖度为1和1/4层(ML)时,H2分子在二维TiC 单原子层表面的离解势垒分别为1.12 和0.33 eV. 因此,除了物理吸附与化学吸附,TiC 表面还存在H单原子吸附. 最大的H2储存率可以达到7.69%(质量分数). 其中,离解的H原子、化学吸附的H2、物理吸附的H2的储存率分别为1.54%、3.07%、3.07%. 符合Kubas吸附特征的储存率为3.07%. 化学吸附能随覆盖度的变化非常小,这有利于H2分子的吸附与释放.  相似文献   

7.
本文用原子簇模型(CM)的从头计算方法, 计算了银表面甲醇氧化反应中的静态吸附物种的优化几何构型及吸附性质。计算表明在清洁银表面甲醇、甲醛只存在物理吸附; 当表面存在吸附氧原子时, 甲醇可在银表面形成两种分子态吸附;甲醛与表面羟基OH(a)或氢原子H(a)共存时在银表面能够形成化学吸附, 且CH2O(a)极易与O(a)反应生成深度氧化中间体η^2-甲二氧基; 中间产物甲氧基在无氧的银表面能够形成稳定吸附, 在富氧银表面极易进一步氧化脱氢生成产物甲醛。通过计算与实验结果的对照, 我们对反应机理作了初步讨论。  相似文献   

8.
The effects of thermal treatments on the rehydration process and photocatalytic activity were investigated by 1H NMR spectroscopy for six anatase abundant TiO2 photocatalysts with different properties. Acetic acid and benzoic acid were employed for photodecomposition in aqueous suspension. After the calcinations at 973 K, physisorbed water layers recovered relatively fast for P25, F4, and AMT-600 (shorter than 24 h) with no significant enhancement of the photocatalytic decomposition. On the other hand, for ST-01, UV-100, and AMT-100, the recovery was very slow (longer than 1 week) and only partially reversible, and the photocatalytic decomposition was considerably enhanced but retarded with rehydration. In the presence of adsorbed water, the binding of a carboxyl group of the molecules with adsorbed water is considered to compete with the direct adsorption on the surface, which reduces the amount of the direct adsorption and results in the reduction in the photocatalytic efficiency. In addition, the photocatalytic decomposition of benzoic acid with an aromatic ring was much faster in all of the TiO2 aqueous suspensions and more enhanced for the fully dehydroxylated TiO2 than that of acetic acid. These results suggest that the most efficient photocatalytic sites should be the hydrophobic sites on the TiO2 surface. The difference among the rehydration rates of different TiO2 is discussed in terms of thermally induced changes of surface morphology.  相似文献   

9.
Dr. Run Long 《Chemphyschem》2013,14(3):579-582
We investigated the interfacial electronic structure and charge transfer properties of graphene quantum dot (GQD) physisorption and chemisorption on the TiO2 (110) surface from density functional theory calculations. The simulations show that a slight charge transfer occurs in physisorption case while a significant charge transfer takes place in chemisorption configuration. We present a detailed comparison of the similarities and differences between the electronic structures. The similarities originate from the positive work function difference in both the physisorption and chemisorption configurations, which is able to drive electron transfer from GQD into TiO2, leading to charge separation across the GQD–TiO2 interface. The differences stem from the interaction between the GQD and TiO2 substrate. For example, GQD bounds to TiO2 surface through van der Waals interactions in the case of physisorption. In the chemisorption configuration, however, there exists strong covalent bonding between them. This leads to much more efficient charge separation for chemisorption than for physisorption. Furthermore, the GQD–TiO2 composites show large band‐gap narrowing that could extend the optical absorption edge into the visible‐light region. This should imply that chemisorbed GQDs produce a composite with better photocatalytic and photovoltaic performance than composites formed through physisorption.  相似文献   

10.
Methanol adsorption on clean and hydrated anatase TiO(2)(001)-1 x 1 is studied using density functional theory calculations and first principles molecular dynamics simulations. It is found that (i) dissociative adsorption is favored on clean TiO(2)(001) at both low and high methanol coverages; (ii) on the partially hydrated surface, methanol dissociation is not affected by the coadsorbed water and can still occur very easily; (iii) the dissociative adsorption energy of methanol is always larger than that of water under similar conditions. This implies that water replacement by methanol is energetically favored, in agreement with recent experimental observations on colloidal anatase nanoparticles.  相似文献   

11.
Adsorption of ammonia (NH3) onto activated carbons prepared from palm shells impregnated with sulfuric acid (H2SO4) was investigated. The effects of activation temperature and acid concentration on pore surface area development were studied. The relatively large micropore surface areas of the palm-shell activated carbons prepared by H2SO4 activation suggest their potential applications in gas adsorption. Adsorption experiments at a fixed temperature showed that the amounts of NH3 adsorbed onto the chemically activated carbons, unlike those prepared by CO2 thermal activation, were not solely dependent on the specific pore surface areas of the adsorbents. Further adsorption tests for a wide range of temperatures suggested combined physisorption and chemisorption of NH3. Desorption tests at the same temperature as adsorption and at an elevated temperature were carried out to confirm the occurrence of chemisorption due to the interaction between NH3 and some oxygen functional groups via hydrogen bonding. The surface functional groups on the adsorbent surface were detected by Fourier transform infrared spectroscopy. The amounts of NH3 adsorbed by chemisorption were correlated with the contents of elemental oxygen present in the adsorbents. Mechanisms for chemical activation and adsorption processes are proposed based on the observed phenomena.  相似文献   

12.
张养军  申烨华  张启东  耿信笃 《色谱》2000,18(6):487-490
 提出了以醋酸 水作为流动相的体系中 ,在ODS柱上分离生物大分子的反相高效液相色谱 (RPLC)方法。实验结果表明 ,醋酸 水的洗脱能力强于甲醇 水 三氟醋酸体系 ,在一定程度上克服了色谱分离中一些蛋白质的不可逆吸附且具有便于冷冻干燥的优点。用参数Z(1mol溶剂化溶质被溶剂化固定相吸附时从两者接触表面释放出置换剂的摩尔总数 ) ,logI(与 1mol溶质对固定相亲和势有关的常数 )和 j(与 1mol溶剂对固定相亲和势有关的常数 )对 9种蛋白质在此流动相体系中的保留进行了表征。  相似文献   

13.
The geometries of methanol adsorbed on an oxygen-free silver surface, a promoted silver surface and an oxygen preadsorbed silver surface were optimized at the MP2 level and the energies were calculated at the MP4 level. Our calculations showed that weak physisorption of methanol occurs on the clean silver surface, but stable molecular chemisorption occurs in the other two cases. The adsorption and dissociation process of methanol was postulated to occur via two pathways, i.e. the Eley-Rideal mode and the Langmuir-Hinshelwood mode. The calculations also showed that the presence of atomic oxygen at a silver surface is essential for the cleavage of the OH bond in the methanol. The dissociation of methanol in the Langmuir-Hinshelwood mode has a small energy barrier but has no energy barrier in the Eley-Rideal mode.  相似文献   

14.
TiO(2) and different Cu wt% loaded TiO(2) (TC(0.5-5.0)), 10 wt% TC(2.0) supported on molecular sieve 5A (10 wt% TC(2.0)/MS) were prepared by impregnation and solid-state dispersion methods. The photocatalysts prepared were characterized using XRD, SEM, and UV-Vis DRS, TEM, XPS spectroscopy techniques. Photocatalytic reduction of CO(2) in water and alkaline solution are investigated in a batch reactor. The yield of oxalic acid increased notably when TC was supported on molecular sieve. The Cu-TiO(2) supported on molecular sieve catalyst promotes the charge separation that leads to an increase in the selective formation of oxalic acid in addition to methanol, acetic acid and traces of methane. The product formation is due to the high adsorption of CO(2), water and product shape selectivity of the composite photocatalyst. The maximum yield of oxalic acid was found to be 65.6 μg h(-1) g(-1) per cat using 0.2 N NaOH containing solution over 10 wt% TC(2.0)/MS photocatalyst. The difference in the photocatalytic activity is related to its physicochemical properties.  相似文献   

15.
吴立明  章永凡 《结构化学》1999,18(4):304-309
1INTRODUCTIONTitaniumdioxideisatransition metaloxidethathasproveditsusefulnesinawiderangeofcatalyticandelectrochemicalapplica...  相似文献   

16.
The mechanism of water photooxidation (oxygen photoevolution) on a TaON photocatalyst was studied on the basis of our previous studies on the mechanism of this reaction on TiO(2) and N-doped TiO(2). We have confirmed that photocatalytic O(2) evolution occurs from an aqueous TaON suspension in the presence of Fe(3+), as reported. In-situ MIR-IR experiments have indicated that the TaON surface is slightly oxidized under visible-light irradiation, indicating that the oxygen photoevolution on TaON actually occurs on a thin Ta-oxide overlayer. The in-situ MIR-IR experiments have also shown that a certain surface peroxo species, tentatively assigned to adsorbed HOOH, is formed as an intermediate of the O(2) photoevolution reaction. Studies on the effect of addition of reductants to the electrolyte on the IPCE have shown that photogenerated holes at the TaON surface cannot oxidize reductants such as SCN(-), Br(-), methanol, ethanol, 2-propanol, and acetic acid, though they can oxidize H(2)O into O(2). Detailed considerations of these results have strongly suggested that the water photooxidation reaction on TaON proceeds by our recently proposed new mechanism, that is, the reaction is initiated by a nucleophilic attack of a water molecule (Lewis base) on a surface-trapped hole (Lewis acid).  相似文献   

17.
A novel core-shell composite photocatalyst, commercially available titanium(IV) oxide (TiO(2)) particles directly incorporated into a hollow amorphous silica shell, was fabricated by successive coating of TiO(2) with a carbon layer and a silica layer followed by heat treatment to remove the carbon layer. The composite induced efficient photocatalytic reactions when relatively small substrates were used, such as methanol dehydration and decomposition of acetic acid, without any reduction in the intrinsic activity of original TiO(2), but did not exhibit efficient photocatalytic activity for decomposition of large substrates, methylene blue and polyvinyl alcohol. The unique size-selective properties of the composites are due to their structural characteristics, i.e., the presence of a pore system and a void space in the silica shell and between the shell and medial TiO(2) particles, respectively. The loading of alkylsilyl groups on the surface of the composite led to highly photostable floatability: the floated sample also induced efficient photocatalytic reaction for decomposition of acetic acid while retaining floatation at the gas/water interface.  相似文献   

18.
The adsorption of glycine (NH2CH2COOH) was examined by scanning tunneling microscopy (STM) on TiO2(110) surfaces at room temperature. A (2x1) ordered overlayer was observed on the TiO2(110)-(1x1) surface. The adsorption of acetic acid and propanoic acid was also investigated on this surface and their STM images were quite similar to that of glycine. Since acetate and propanoate are formed by dissociative adsorption of these acids on TiO2(110), it is proposed that glycine adsorbs in the same way to form a glycinate. The amino group in the glycinate adlayer structurally analogous to those formed from aliphatic carboxylic acids would be extended away from the surface and potentially free to participate in additional reactions. The underlying structure of the TiO2 surface is important in determining the structure of the glycinate adlayer; no ordering of these adsorbates was observed on the TiO2(110)-(1x2) surface.  相似文献   

19.
采用密度泛函理论(DFT)B3LYP方法对全氟辛烷磺酸(PFOS)在锐钛型TiO2表面的化学吸附和物理吸附行为进行了研究,其中化学吸附包含双齿双核(BB)和单齿单核(MM)在内的4种可能的吸附构型.吸附能(Eads)及反应吉布斯自由能(ΔGads)的计算结果表明,PFOS分子易于与TiO2表面发生氢键作用吸附;化学吸附表现为PFOS分子与TiO2表面的水分子(H2O)和羟基(—OH)反应,且与取代—OH相比,H2O取代相对更容易发生,其中,MM1构型(取代一个表面水分子)为化学吸附中的优势构型.PFOS在锐钛矿表面吸附的热力学稳定性和反应自发性顺序如下:H-Bonded(氢键吸附)>MM1(取代一个表面水分子)>BB1(取代两个表面水分子)>MM2(取代一个表面羟基)>BB2(取代一个表面水分子和一个表面羟基).成键结构分析表明,TiO2表面H2O/—OH官能团与PFOS上的磺酸基之间形成了中等强度的氢键;在化学吸附过程中,电荷从PFOS分子向TiO2表面发生转移,生成Ti—O—S化学键,电荷转移主要来自PFOS分子的O和F原子.  相似文献   

20.
Zhong Z  Chen F  Ang TP  Han Y  Lim W  Gedanken A 《Inorganic chemistry》2006,45(12):4619-4625
Titanium dioxide was synthesized by the hydrolysis of titanium tetraisopropoxide (TTIP) in the presence of acetic acid, 2-propanol, and organic amines (octylamine, aniline, and isobutylamine). H2O was supplied by an esterification reaction between acetic acid and 2-propanol (denoted as H2Oe), and/or by intentionally adding it (denoted as H2Oa). It was found that the quantity of H2Oa plays a crucial role in the morphology and porous structure of the final TiO2 product. Without the addition of H2Oa, 1D and porous TiO2 was synthesized. With the addition of H2Oa, and when the H2Oa:TiO2 molar ratio was in the range of 1:1 to 60:1, macroporous TiO2 microspheres possessing a large surface area and high thermal stability were obtained. When the H2Oa:TiO2 molar ratio exceeded 60:1, porous TiO2 with an irregular shape was formed. The variation in the morphology and porous structure is attributed to the manipulation of the growth kinetics by the addition of water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号