首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Sesbania gum (SG) was oxidized by sodium hypochlorite. Resultant oxidized sesbania gum (OSG) was characterized by means of Fourier transformation infrared spectrometry, scanning electron microscopy, and high resolution transmission electron microscopy. The thermal stability of OSG was analyzed by means of thermal analysis and the apparent viscosity of its slurry was also measured by rotary viscometer. Moreover, the effect of OSG slurry as a warp sizing agent on the physico-mechanical properties of fine cotton yarns was investigated. It was found that fine cotton yarns sized with OSG had increased tensile strength and decreased elongation at break than the untreated ones. Besides, the fine cotton yarns treated with the OSG slurry had obviously decreased hairiness index and slightly increased abrasion resistance, and OSG slurry had good adhesion. In one word, as-synthesized OSG slurry may find promising application as a novel high-performance warp sizing agent for fine cotton yarns.  相似文献   

2.
This review presents applications of spectroscopic methods, infrared and Raman spectroscopies in the studies of the structure of gluten network and gluten proteins (gliadins and glutenins). Both methods provide complimentary information on the secondary and tertiary structure of the proteins including analysis of amide I and III bands, conformation of disulphide bridges, behaviour of tyrosine and tryptophan residues, and water populations. Changes in the gluten structure can be studied as an effect of dough mixing in different conditions (e.g., hydration level, temperature), dough freezing and frozen storage as well as addition of different compounds to the dough (e.g., dough improvers, dietary fibre preparations, polysaccharides and polyphenols). Additionally, effect of above mentioned factors can be determined in a common wheat dough, model dough (prepared from reconstituted flour containing only wheat starch and wheat gluten), gluten dough (lack of starch), and in gliadins and glutenins. The samples were studied in the hydrated state, in the form of powder, film or in solution. Analysis of the studies presented in this review indicates that an adequate amount of water is a critical factor affecting gluten structure.  相似文献   

3.
Stable alkenyl succinic anhydride (ASA) emulsions with approximately 25% of ASA were prepared by using native maize starch and laponite particles as stabilizers. The morphology, sizing performance, and storage stability of the as-prepared ASA emulsions were evaluated. It was surprisingly found that the introduction of laponite particles could significantly improve the emulsion stability, reduce the emulsion droplet size, and enhance the sizing performance, while the occurrence of native maize starch depresses the deterioration of the ASA emulsion in sizing performance with increasing emulsion storage time.  相似文献   

4.
An original method based on atomic force microscopy (AFM) in contact mode was developed to abrade progressively the surface of tablets made of starch or gluten polymers isolated from wheat. The volume of the material removed by the tip was estimated from the analysis of successive topographic images of the surface, and the shear force was measured by keeping a constant normal force. Our data together with a simple tribological model provide clear evidence for a higher hardness and shear strength of starch compared to gluten. Gluten appears to have mechanical properties close to soft materials, such as talc, whereas starch displays higher hardness close to calcite. Our results are in a better agreement with structural properties of gluten (complex protein network) and starch (granular and semi-cristalline structure) than earlier studies by micro-indentation. This work shows that the AFM scratching method is relevant for the characterization of any polymer surface, in particular in application to materials made of different polymers at the nano-scale.  相似文献   

5.
Carboxymethylation of wheat starch and α-cyclodextrin followed by ultrasonic treatment of carboxymethyl wheat starch afforded starch derivatives differing in molecular size. Their degree of substitution was estimated to be 0.6. Starch materials were further sulfated to give hybrid derivatives with carboxymethyl and sulfate groups. A series of wheat starch and α-cyclodextrin derivatives were characterized by FT-IR spectroscopy and thermogravimetric analysis. Thermal analysis of starch and their derivatives revealed information concerning their thermal stability and decomposition. It has been found that carboxymethylation and sulfation decrease the thermal stability of starch materials. Similarly, their hybrid carboxymethyl-sulfate derivatives showed the same effect. Further, it has been found that the thermal stability of cyclic molecules was higher in comparison with linear ones.  相似文献   

6.
Eri cocoons were prepared into short fibers and subsequently blended with cotton fiber in order to develop the new fiber blended yarn in the short spinning system. The Eri and cotton fibers were blended using the drawframe blending with varying blending factors, viz. blending composition (0–100%) and yarn counts (30 and 50 tex). The results showed that Eri fiber which was longer and stronger than cotton fiber, affected the fiber distribution in the yarn cross-section. The mechanical properties of the blended fibers and yarns increased with increasing silk content. Longer fibers of Eri silk tended to move towards the yarn core, especially at silk content higher than 50%. Moreover, stronger and more extensible Eri silk fiber gave an advantage to the improvement of mechanical properties of those blended yarns with silk content higher than 50%. However, with increasing silk content, the blended yarns were more irregular as shown in %CV. Concerning the yarn count effect, the higher yarn count of 50 tex resulted in a more regular yarn with higher yarn strength than that of 30 tex. The plain-woven fabrics were prepared using the blended yarns as a weft yarn and the cotton yarn or silk yarn as a warp yarn. The mechanical properties of those woven fabrics were characterized in order to study the influence of silk contents. The results showed that tensile strength, %elongation and tear strength of woven fabrics using the blended yarn were increased with an increase in silk content. This is an advantage of Eri silk in the aspect of rendering the strength to the blended yarns and fabrics.  相似文献   

7.
This study proposes composite stents with core–shell structure. Biodegradable polyvinyl alcohol (PVA) yarns are twisted and then coated with polycaprolactone/polyethylene glycol (PEG) blends. The coated yarns are weft knitted into braids and then thermally treated to form composite stents with core–shell structure. The morphological, mechanical, and biological characteristics of the formed composite stents are evaluated to determine the effects of PEG concentration. Results show that composite stents acquire the flexibility of PVA yarns and elasticity of weft knits. The presence of PEG positively influences composite stent performance. When the PEG concentration is 30 wt%, composite stents exhibit a compressive strength of 6.15 N and cell viability of 97.32% after a 24 h of culture. The selected materials are biodegradable, and the novel structure meets the requirements of bioresorbable vascular stent, which suggests that the proposed composite stents have good potential for advancement.  相似文献   

8.
Immunoreactivity and detection of wheat proteins by commercial ELISA kits   总被引:1,自引:0,他引:1  
Wheat proteins are responsible for sensitivities, including baker's asthma, immunoglobulin E (IgE)-mediated allergic reaction, wheat-dependent, exercise-induced anaphylaxis, and celiac disease. The detection of gluten/wheat traces in foods is important to safeguard the health of wheat-sensitive individuals and comply with food labeling. Many immunoanalytical-based commercial kits are available for the quantification of gliadin/gluten/wheat proteins. We compared the immunoreactivity of wheat fractions with wheat-allergic human serum IgE and antibody conjugates used in six commercial immunoassay kits. Moreover, the performance of the kits was tested using corn flour spiked with gluten (5, 10, 25, and 50 ppm) and wheat flour (50, 100, 250, and 500 ppm). The albumin, globulin, gliadin, and glutenin fractions reacted with IgE from nine, eight, two, and eight patients' sera, respectively, out of nine wheat allergic patients tested. Among the antibodies from commercial kits, those from R-Biopharm, Morinaga, and Romer Labs reacted strongly with the gliadin fraction, whereas those from BioKits, ALLER-TEK, and ELISA Systems reacted strongly with the glutenin fraction. All kits showed minimal or no reactivity with albumin and globulin fractions. All kits detected the gluten and wheat flour in a corn flour matrix at the lowest spiked levels of 5 and 50 ppm, respectively. However, there was wide variation among the kits when comparing the recovery of gluten and wheat flour. The recovery was also dependent on the source material (gluten or wheat flour) used for spiking the corn flour matrix.  相似文献   

9.
Three types of wheat were submitted to two different milling procedures, giving rise to six flours which differed by some physico-chemical characteristics such as particle size, level of damaged starch and protein content. Differential scanning calorimetry was used for monitoring heat-induced structural changes in flour aqueous dispersions 80% water and in doughs 45% water. Differences between the thermal behaviour of the flour dispersions and doughs were explained mainly by differences in protein content. This result was confirmed after partial substitution of flour by gluten. Dynamic mechanical analysis performed at 20°C on the flour doughs indicated, as expected, a linear increase in the elastic modulus with increasing protein content. The results did not bring any evidence that, under these experimental conditions, starch damage might affect gluten hydration.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

10.
Celiac disease (CD) is a permanent gastrointestinal disorder characterized by the intolerance to a group of proteins called gluten present in wheat, rye, barley, and possibly oats. The only therapy is a strict lifelong gluten-free diet. The standard method for gluten determination in foods produced for CD patients is the R5-enzyme-linked immunosorbent assay (ELISA) as proposed by the recent Codex Alimentarius Draft Revised Standard. This test is based on the determination of prolamins, the alcohol-soluble proteins of gluten, and is available as a sandwich ELISA for intact proteins and as a competitive ELISA for gluten-derived peptides. While the suitability of the sandwich ELISA including a wheat prolamin (gliadin) reference for calibration has been shown by various studies and a ring test, the competitive ELISA still lacks a convenient reference for the quantitation of gluten peptides in fermented cereal foods (e.g., sourdough products, starch syrup, malt extracts, beer). Therefore, the aim of the present study was to prepare a suitable reference for the quantitation of partially hydrolyzed gluten in fermented wheat, rye, and barley products. The prolamin fractions from barley (hordein) and rye (secalin) were isolated from corresponding flours by means of a modified preparative Osborne fractionation. The prolamin fraction from wheat was obtained as reference gliadin from the Prolamin Working Group. The prolamin fractions were successively digested by pepsin and trypsin or pepsin and chymotrypsin procedures, which have been used for CD-specific toxicity tests on cereal storage proteins for many years. The protein/peptide content (N × 5.7) of the prolamin fractions and digests, which was the basis for the calculation of the gluten content by means of ELISA, varied between 67.1% and 96.0%. The prolamin fractions and enzymatic digests were then tested for their response in both sandwich and competitive assays. Intact prolamins responded similarly in both ELISA showing no important differences between the cereals. In the case of digested proteins, however, the sandwich ELISA was considerably less sensitive than the competitive ELISA. The former provided approximately 40% and the latter 70% of the signal intensity obtained with the intact prolamins. Thus, the combination of the competitive ELISA and the enzymatic digests of prolamin fractions as reference was considered to be an adequate system for the analysis of partially hydrolyzed gluten. The limit of detection using a peptic-tryptic hordein digest as reference was 2.3 μg prolamin equivalent per milliliter, and the limit of quantitation was 6.7 μg prolamin equivalent per milliliter. This system was applied for the determination of gluten equivalents in five commercial beverages based on fermented cereals.   相似文献   

11.
Analysis of gluten proteins from the wheat grain endosperm has long challenged the analytical chemist. Several hundred unique polypeptides are present, many in large polymers. This complexity, plus useful relationships of composition to genotype and quality, encouraged development and application of electrophoresis and chromatography for gluten analysis. We review the methods of polyacrylamide gel electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, isoelectric focusing and high-performance liquid chromatography available for study of wheat proteins. Singly and in combination, they provide rapid, reproducible, high-resolution separations based on size, charge, or surface hydrophobicity. As challenging and important as the analyses themselves, however, is interpretation of data. Subjective evaluation is sometimes possible, but statistical methods such as similarity scores, clustering, principal components, multiple linear regression, and partial least squares now are increasingly used for data analysis. We review the use of these procedures, and precautions necessary to avoid misinterpretation of data. Optimal evaluation of protein analytical data will enhance the value of such analyses in wheat breeding, marketing, and processing.  相似文献   

12.
研究了甘油增塑谷朊粉/淀粉混合体系的动态流变行为与单轴拉伸力学性能,考察了淀粉与水含量的影响.研究结果表明,含水量10%的混合体系储能模量(G′)随淀粉含量增大而增大,并在100℃出现橡胶平台.增塑谷朊粉在30℃呈现凝胶特性,在80℃出现交联网络结构.淀粉粒子可与小麦蛋白质形成复杂相互作用,阻碍蛋白质链段运动,导致模量与强度增加,断裂伸长率降低.含水量为20%与25%时,水份在淀粉粒子与蛋白质网络间起稀释和润滑作用,拉伸强度与断裂伸长率随淀粉含量的增高而降低.  相似文献   

13.
Keratinous wastes have increasingly become a problem and accumulate in the environment mainly in the form of feathers, generated mainly from a large number of poultry industries. As keratins are very difficult to degrade by general proteases, they pose a major environmental problem. Therefore, microorganisms which would effectively degrade keratins are needed for recycling such wastes. A geophilic dermatophyte, Microsporum fulvum IBRL SD3 which was isolated from a soil sample collected from a chicken feather dumping site using a baiting technique, was capable to produce keratinase significantly. The crude keratinase was able to degrade whole chicken feathers effectively. The end product of the degradation was protein that contained essential amino acids and may have potential application in animal feed production. Thus, M. fulvum could be a novel organism to produce keratinase for chicken feathers degradation.  相似文献   

14.
The main shortcomings of biodegradable starch/poly(vinyl alcohol) (PVA) film are hydrophilicity and poor mechanical properties. With an aim to overcome these disadvantages, cornstarch was methylated and blend films were prepared by mixing methylated-cornstarch (MCS) with PVA. The mechanical properties, water resistance and biodegradability of the MCS/PVA film were investigated. It was found that MCS/PVA film had higher water resistance than the native starch/PVA film. However, the water resistance of MCS/PVA films did not have significant difference with the increase in the degree of substitution (DS) of the methylated starch from 0.096 to 0.864. Enzymatic, microbiological and soil burial biodegradation results indicated that the biodegradability of the MCS/PVA film strongly depended on the starch proportion in the film matrix. The degradation rate of starch in the starch/PVA film was hindered by blending starch with PVA. Both tensile strength and percent elongation at break of the MCS/PVA film were improved as DS of the methylated starch increased. Conversely, increasing the methylated starch proportion in film matrix deteriorated both tensile strength and percent elongation at break of the film.  相似文献   

15.
Disulfide bonds play a pivotal role in maintaining the natural structures of proteins to ensure their performance of normal biological functions. Moreover, biological molecular assembly, such as the gluten network, is also largely dependent on the intermolecular crosslinking via disulfide bonds. In eukaryotes, the formation and rearrangement of most intra- and intermolecular disulfide bonds in the endoplasmic reticulum (ER) are mediated by protein disulfide isomerases (PDIs), which consist of multiple thioredoxin-like domains. These domains assist correct folding of proteins, as well as effectively prevent the aggregation of misfolded ones. Protein misfolding often leads to the formation of pathological protein aggregations that cause many diseases. On the other hand, glutenin aggregation and subsequent crosslinking are required for the formation of a rheologically dominating gluten network. Herein, the mechanism of PDI-regulated disulfide bond formation is important for understanding not only protein folding and associated diseases, but also the formation of functional biomolecular assembly. This review systematically illustrated the process of human protein disulfide isomerase (hPDI) mediated disulfide bond formation and complemented this with the current mechanism of wheat protein disulfide isomerase (wPDI) catalyzed formation of gluten networks.  相似文献   

16.
Summary There is a need for food based reference materials characterized for organic nutrient content, since very few are presently available. A series of twelve food matrices has been prepared by Agriculture Canada as Candidate Reference Materials. This paper reports a survey of the organic nutrient content of these twelve materials which include bovine muscle powder, corn starch, hard red spring wheat flour, soft winter wheat flour, white granulated sugar, whole milk powder, wheat gluten, potato starch, corn bran, durum wheat flour, whole egg powder, and microcrystalline cellulose. Whole egg, bovine muscle and whole milk powder appear to be best suited for further development as organic nutrient standards.
Überblick über ausgewählte Materialien zur Verwendung als Standards für organische Nährstoffe

Contribution Number 88-65 from Land Resource Research Center  相似文献   

17.
This work developed novel jute-yarn, non-crimp, unidirectional (UD) preforms and their composites, with three different types of warp jute yarns of varying linear densities and twists in the dry UD preforms, in order to present a possible solution to the detrimental effects of higher yarn twists and crimp at the warp–weft yarn interlacements of traditional, woven, preform-based composites on their mechanical properties. In the developed UD preforms, warp jute yarns were placed in parallel by using a wooden picture-frame pin board, with the minimal number of glass weft yarns to avoid crimp at the warp–weft yarns interlacements, which can significantly enhance the load-bearing ability of UD composites compared to traditional, woven, preform composites. It was found that an optimal combination of jute warp yarn linear densities and twists in the UD preforms is important to achieve the best possible mechanical properties of newly developed UD composites, because it encourages a proper polymer-matrix impregnation on jute fibres, leading to excellent fibre–matrix interface bonding. Composites made from the 25 lb/spindle jute warp yarn linear density (UD25) exhibited higher tensile and flexural properties than other UD composites (UD20, UD30). All the UD composites showed a much better performance compared to the traditional woven preform composites (W20), which were obviously related to the higher crimp and yarn interlacements, less load-carrying capacity, and poor fiber–matrix interfaces of W20 composites. UD25 composites exhibited a significant enhancement in tensile modulus by ~232% and strength by ~146%; flexural modulus by 138.5% and strength by 145% compared to W20 composites. This reveals that newly developed, non-crimp, UD preform composites can effectively replace the traditional woven composites in lightweight, load-bearing, complex-shaped composite applications, and hence, this warrants further investigations of the developed composites, especially on long-term and dynamic-loading mechanical characterizations.  相似文献   

18.
阴离子型淀粉微球的合成及性能研究   总被引:25,自引:0,他引:25  
本文以淀粉或淀粉衍生物为原料,POCl3为交联剂,采用逆相悬浮交聚合技术合成了阴离子淀粉微球。以淀粉为基质中性微球不原料,用Na3P3O9作交联剂进行二次交联和阴离子化,得到另一种阴离子型淀粉微球,研究了两种微球的表观形态,粒径分布、溶胀性和吸附载药性能。  相似文献   

19.
Single-use packaging materials made of expanded polystyrene (EPS) have been identified as suitable items to be replaced by biodegradable materials. Plates made with EPS represent a source of non-degradable waste that is difficult to collect and to recycle. Potato starch based foamed plates have been prepared by a baking process. Presently, foam plates have been prepared by baking aqueous mixtures of potato starch, corn fibers, and poly(vinyl alcohol) (PVA) inside a hot mold. The effects of the addition of corn fibers, a co-product of bio-ethanol production, on mechanical properties and moisture resistance of potato starch based foamed plates were investigated. The addition of corn fiber to potato starch batter increased baking time and an increased batter volume is needed to form a complete tray. The mechanical properties of the trays decreased with added corn fiber. In previous studies PVA has been added as aqueous solution to improve strength, flexibility, and water resistance of baked starch trays. In this study, 88% hydrolyzed PVA was added as a powder in the mixture, avoiding the time consuming and costly step of pre-dissolving the PVA. The addition of PVA to potato starch batters containing corn fiber mitigated the reduction in tensile properties seen in trays with added corn fiber. Starch-based trays produced with a high fiber ratio and PVA, showed improved water resistance.  相似文献   

20.
Poly(vinyl alcohol), PVA is a polymer of great importance because of its many appealing characteristics specifically for various pharmaceutical and biomedical applications. Physically crosslinked hydrogel membranes composed of different amounts of hydroxyethyl starch (HES) in (PVA) and ampicillin were prepared by applying freeze–thawing method. This freezing–thawing cycle was repeated for three consecutive cycles. Physicochemical properties of PVA–HES membrane gel such as gel fraction, swelling, morphology, elongation, tensile strength, and protein adsorption were investigated. Introducing HES into freeze–thawed PVA structure affected crystal size distribution of PVA; and hence physicochemical properties and morphological structure have been affected. Increased HES concentration decreased the gel fraction %, maximum strength and break elongation. Indeed it resulted into a significant incrementing of the swelling ability, amount of protein adsorption, broader pore size, and pore distribution of membrane morphological structure. Furthermore, an increase in HES concentration resulted in better and still lower thermal stability compared to virgin PVA and freeze–thawed PVA. The maximum weight loss of PVA–HES hydrogel membranes ranged between 18% and 60% according to HES content, after two days of degradation in phosphate buffer saline (PBS), which indicates they are biodegradable. Thus, PVA–HES hydrogel membranes containing ampicillin could be a novel approach for biomedical application e.g. wound dressing purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号