首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Weakly ionised gaseous plasma created in a moist tetrafluoromethane gas at a low pressure with an electrodeless radiofrequency discharge was applied to modify the surface properties of cellulose fibres. The plasma was used to increase the adsorption of zinc oxide (ZnO) nanoparticles such that cellulose fibres with good ultraviolet (UV) protective properties could be created. The UV protection factor (UPF) values of the ZnO-functionalised fibres were determined as a function of the plasma treatment time. The chemical and physical surface properties of the plasma-treated fibres were examined using scanning electron microscopy, X-ray photoelectron spectroscopy, and wettability tests. The quantity of zinc on the fibres was determined using inductively coupled plasma mass spectroscopy. The results indicated that 30 s of plasma treatment resulted in ZnO-functionalised samples with lower UPF values than samples without plasma treatment due to the creation of fluorine-rich functional groups on cellulose fibres and the agglomeration of ZnO nanoparticles. The highest UPF values (50+) were obtained when samples were treated with plasma for 10 s. These high UPF values were a result of the increased adsorption of uniformly distributed ZnO nanoparticles caused by fibres surface functionalization and roughening upon plasma treatment. Furthermore, the mechanical properties of textiles treated with moist CF4 plasma for 10 s were slightly improved.  相似文献   

2.
Ethylcellulose (EC) nanoparticles have been widely investigated for their use as drug delivery systems. However, their application on the textile field has been hardly studied. In this work, the use of EC nanoparticles as nanocarriers of active or lipid soluble compounds and their subsequent deposition on cotton textile is proposed in order to obtain functional textiles. A UV protective textile has been obtained after deposition of EC nanoparticles loaded with a liposoluble UV filter on cotton fabrics. The EC/cotton affinity and the attachment mechanism of EC nanoparticles on cotton substrate was studied by means of thermal behaviour evaluation, estimation of adhesion work (WA) and wash resistance tests. It is proposed that during EC nanoparticles deposition on cotton fabric, entanglement of polymeric chains is favoured, thus improving adhesion of EC nanoparticles on cotton substrate. The functionality of cotton textile was assessed by ultraviolet protection factor (UPF) measurements, showing a high UPF value (UPF = 45). Evaluation of UPF as a function of washing cycles were carried out on treated cotton fabrics. Washed fabrics still provided good UV protection (UPF ≥ 25), evidencing the presence of nanoparticles after washing cycles and the durability of the conferred functionality.  相似文献   

3.
Bamboo viscose, a new cellulose-based textile material was investigated for biomedical applications such as ultraviolet protective ability and antimicrobial activity. Untreated bamboo viscose fabric was found to afford poor protection against UV radiation and also possessed minimal antimicrobial properties. To enhance UV protection characteristics, fabrics were subjected to different treatments viz., dyeing; finishing with commercial UV absorbers; and one-bath dyeing and finishing with UV absorber. Treatment conditions were optimized with regard to the concentration of UV absorber and dye. Results obtained showed that the UPF values increase with increase in UV absorber and dye concentration. Subsequently, a single bath process to apply both antimicrobial and UV protective treatments to bamboo fabric was studied. Results showed that both treatments are compatible for application from a single bath. The effectiveness of the antimicrobial agent was not adversely affected by the presence of an UV absorber and the treated fabric also retained excellent UV protective properties.  相似文献   

4.
This study discusses the possibility of using a corona discharge at atmospheric pressure and air RF plasma at low pressure for the cotton fibre activation prior to deposition of colloidal TiO2 nanoparticles in order to enhance antibacterial, UV protective and self-cleaning properties. X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of TiO2 nanoparticles on the surface of cotton fibres. XPS elemental mapping indicated that TiO2 nanoparticles were more evenly distributed across the surface of untreated and corona pre-treated cotton fabrics in comparison with RF plasma pre-treated fabric. Atomic absorption spectroscopy measurements revealed that the equivalent total content of TiO2 in the cotton fabrics pre-treated by corona and RF plasma was 31% higher than in the fabric that did not undergo any treatment prior to loading of TiO2 nanoparticles. In order to achieve maximum bacteria (Gram-negative bacteria Escherichia coli) reduction, untreated cotton fabric had to be loaded with colloidal TiO2 nanoparticles twice, but only once following corona or RF plasma pre-treatment. Deposition of TiO2 nanoparticles onto cotton fabrics provided maximum UV protective rating of 50+. Extraordinary photocatalytic activity of TiO2 nanoparticles deposited onto cotton fabrics was proved by self-cleaning of blueberry juice stains and photodegradation of methylene blue in aqueous solution under UV illumination.  相似文献   

5.
The objective of this study was to highlight the potential application of the corona discharge at atmospheric pressure for the surface activation of polyester (PES) fabrics in order to improve the binding efficiency of colloidal TiO2 nanoparticles. The obtained nanocomposite textile materials provide desirable level of UV protection, self‐cleaning properties, and photodegradation activity. The measured UV protection factor (UPF) of fabrics corresponds to UPF rating of 50+, designating the maximum UV protection. Additionally, the total photodegradation of methylene blue in aqueous solution was achieved after 24 hr of UV illumination and this capability was preserved and even improved after four repeated cycles. The results showed that the corona treated PES fabrics loaded with TiO2 nanoparticles had considerably enhanced the overall efficiency compared to PES fabrics loaded only with TiO2 nanoparticles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Polyoxometalates (POMs) were used, together with chitosan (CS), to obtain hybrid nanoaggregates. Three representative POMs were efficiently assembled into nanoparticles of few hundred nm diameter, featuring entangled ribbons substructure. In order to establish suitable preparation and stability conditions, the assemblies were characterized in solution by UV–Vis spectroscopy, dynamic light scattering and ζ-potential. The nanoparticles were tested against E. coli (106 CFU/ml) in aqueous solution, showing a synergic activity of the heteropolyacid H5PMo10V2O40 and CS. For such components, a highly porous and antibacterial film was obtained upon lyophilisation of the colloidal mixture.  相似文献   

7.
Nitrogen doped zinc oxide (ZnO) nanoparticles have been synthesized using a colloidal route and low temperature nitridation process. Based on these results, 200 nm thick transparent ZnO thin films have been prepared by dip-coating on SiO2 substrate from a ZnO colloidal solution. Zinc peroxide (ZnO2) thin film was then obtained after the chemical conversion of a ZnO colloidal thin film by H2O2 solution. Finally, a nitrogen doped ZnO nanocrystalline thin film (ZnO:N) was obtained by ammonolysis at 250 °C. All the films have been characterized by scanning electron microscopy, X-ray diffraction, X-Ray photoelectron spectroscopy and UV–Visible transmittance spectroscopy.  相似文献   

8.
A novel coating formulation to impart ultraviolet (UV) protection property to cotton, Polyethylene trephethalate (PET) and cotton/PET fabrics was prepared and gamma rays as an ionizing radiation was utilized for surface curing. Natural occurring aluminum potassium sulfate (Alum) was used individually and in binary coat with Zinc Oxide (ZnO), to induce the UV-blocking properties. It was found that using Alum (0.3 g/ml) caused a prompt increase in ultraviolet protection factor (UPF) over the uncoated fabrics. Moreover, the incorporated ZnO in the binary coat increased the UPF for two to threefold than the stand-alone Alum coating, specially in case of PET coated fabric. Water absorbance and moisture regain of ZnO and Alum/ZnO coated fabrics showed a decrease over the blank samples, due to the usage of oligomer/monomer combination. On contrary, Alum showed a hydrophilic effect with the increase in its content in the formulation. Surface Electron Microscope showed the homogenous coating of fibers. X-ray diffraction (XRD), energy dispersive X-ray (EDX) and water vapor permeability were also tested for coated samples.  相似文献   

9.
This study has been carried out to synthesize nano ZnO on wool fabric and also to investigate influences of nano photo reactors on wool fabric characteristics. Zinc acetate has been used as a precursor and the synthesis process has been done in water and water/ethanol media. The treated wool fabrics were heated at 80°C for 10 h to dehydrate Zn(OH)2 obtaining ZnO. The fabric samples were then subjected to daylight for 7 days to examine the influence of nano ZnO photo reactor on the fabric properties. SEM images revealed the embedding of ZnO nanoparticles on the fabrics and X‐ray diffraction verified the nanoparticles composition. The Yellowness Index (YI) of the fabrics was measured with Color Eye XTH that has been reduced with increasing pH, Zn(CH3COO)2 concentration, ethanol and heating. The lower water contact angle and time of water absorption confirmed higher hydrophilic properties of the treated fabrics. Interestingly, a higher tensile strength obtained on the wool fabrics proved the interaction of ZnO with protein chains of wool, which was verified through lower alkali solubility of treated fabric with nano ZnO and confirmed more benefits of the in situ synthesis process.  相似文献   

10.
Regenerated bacterial cellulose (RBC) composites with zinc-oxide nanoparticles (ZnO) were prepared using a new strategy for enhanced biomedical applications of BC. Powdered BC was dissolved in N-methylmorpholine-N-oxide, and different concentrations of ZnO nanoparticles were mixed into the BC solution. RBC, RBC-ZnO1 (1 % ZnO) and ZnO-RBC2 (2 % ZnO) nanocomposite films were prepared by casting the solutions through an applicator. FE-SEM images confirmed the structural features and impregnation of the RBC films by nanoparticles. XRD analysis indicated the presence of specific peaks for RBC and ZnO in the composites. The RBC nanocomposites were found to have greatly enhanced thermal, mechanical and biological properties. Specifically, the degradation temperatures were improved from 334 °C for RBC to 339 and 344 °C for RBC-ZnO1 and RBC-ZnO2, respectively. The mechanical strength and Young’s modulus of the composites were also higher than those of pure RBC. The greatly improved antibacterial properties of the RBC-ZnO nanocomposites are the most striking feature of the present study. The bacterial growth inhibition measured for the RBC was zero, but reached up to 34 and 41 mm for RBC-ZnO1 and RBC-ZnO2, respectively. In addition to their antibacterial properties, the RBC-ZnO nanocomposites were found to be nontoxic and biocompatible with impressive cell adhesion capabilities. These RBC-ZnO nanocomposites can be used for different biomedical applications and have the potential for use in bioelectroanalysis.  相似文献   

11.
Ag-doped ZnO nanoparticles (Zn1?xAgxO; where x = 0.00–0.05) were synthesized by chemical precipitation method. The synthesized products were characterized by X-ray diffraction, scanning electron microscope (SEM), transmission electron microscope (TEM) and UV–Vis spectrometer. The SEM and TEM micrographs revealed the agglomerated spherical-like morphology and the measurements show that the size of crystallites is in the range of 10–40 nm. Optical measurements indicated a red shift in the absorption band edge after Ag doping. The band gap values of as prepared undoped and doped with silver samples were found to decrease with increase in temperature from 300 to 800 °C. Photocatalytic activities of ZnO and Ag doped ZnO were evaluated by irradiating the sample solution to ultraviolet light by taking methylene blue as organic dye. The experiment demonstrated that the photo-degradation efficiency of 1 mol% Ag-doped ZnO was significantly higher than that of undoped and 2–5 mol% Ag doped ZnO under ultraviolet light irradiation.  相似文献   

12.
Synthesized and commercial titanium dioxide (TiO2) were coated onto household curtain fabrics for anti-microbial and ultraviolet (UV) shielding functions. The coating was performed by inducing a deposition of the TiO2 layer from the Ti precursor onto the fabric surface. A silane adhesive agent was employed to improve the adhesion between the coating and the fabric. Ag nanoparticles were also incorporated into some samples to further improve the anti-bacterial activity, which was evaluated by a standard qualitative test (AATCC 147). Efficiency for UV shielding was evaluated by measuring a UV–visible reflection of the coated fabrics both before and after subjecting it to several washing cycles. The results showed that the TiO2-coated fabrics had potential as both anti-bacterial and UV shielding for the curtain industry.  相似文献   

13.
Hot ethanolic mixtures of hydrated Zn(II)- and Fe(II)-carboxylates (acetate and lactate) react to form yellow-orange colored Fe(III)xZnyOzOHw heteroclusters showing pronounced electronic resonances in the optical UV absorption spectra. On the addition of LiOH to these polymolecular sols, stable nanoparticulate Fe(III)–ZnO colloids are formed. During colloidal growth, 2–4 nm sized weakly crystallized Wurtzite nanoparticles are exclusively formed even in the presence of high Fe content up to 20 at.%. The presence of Fe(III) in the ZnO condensation process retards the nanoparticle growth and blocks the thermal crystallization and size enhancement up to 250 °C. The produced 0.5 M Fe(III)–ZnO sols are useful for film formation processes. From atomic force microscopy-AFM, scanning electron microscopy-SEM and X-ray diffraction-XRD studies, we note important differences in shape and morphology of the thermally annealed Fe(III)–ZnO layers depending on the iron carboxylate employed. Surprisingly, Fe(II)-lactate derived coatings are carrying vertically oriented cone-shaped aggregates composed of 60–120 nm long primary nanorods. Contrary, Fe(II)-acetate based synthesis gave sand-dune like film morphologies containing spherical 12 nm sized nanocrystallites. All film samples possess mesoporosity with pore size ranging between 5 and 20 nm.  相似文献   

14.
This paper describes an attempt in order to improve the durability of the flame retardant polyamide 66 (PA66) fabric prepared by the reaction of surface photografting with acrylamide (AM) under UV irradiation. In this study, N,N′-methylene bisacrylamide (MBAAm) combined with acrylamide has been used as a photosensitive monomer during flame retardant finishing of the PA66 fabric sample. “Durable efficiency” has been introduced to evaluate the durability of AM/MBAAm-g-PA66 fabric after 50 times washing with the 0.5 % commercial grade detergent solution. The result indicates that durable efficiency reaches its maximal value of 94.5 % when the MBAAm concentration is 5.0 mass%. The effect of MBAAm on the flame retardancy, thermal stability and tensile properties of the treated PA66 fabric has been investigated, respectively. And an interesting phenomenon shows that although MBAAm could improve the thermal stability of the treated fabric significantly at high temperature, it could have a negative effect on the flame retardancy and tensile properties of the fabric sample when its concentration is high. Its possible mechanism has been discussed here.  相似文献   

15.
Mn-doped CdS nanoparticles (Cd1?x Mn x S; where x = 0.00–0.10) were synthesized by a chemical precipitation method. The synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope, transmission electron microscope (TEM), and UV–Vis spectrometer. The XRD and TEM measurements show that the size of crystallites is in the range of 10–40 nm. Optical measurements indicated a red shift in the absorption band edge upon Mn doping. The direct allowed band gaps of undoped and Mn-doped CdS nanoparticles measured by UV–Vis spectrometer were 2.3 and 2.4 eV at 400 °C, respectively. Photocatalytic activities of CdS and Mn-doped CdS were evaluated by irradiating the solution to ultraviolet light and taking methyl orange (MO) as organic dye. It was found that 5 mol% Mn-doped CdS bleaches MO much faster than undoped CdS upon its exposure to the ultraviolet light. The experiment demonstrated that the photo-degradation efficiency of 5 mol% Mn-doped CdS was significantly higher than that of undoped CdS.  相似文献   

16.
Ag nanoparticles supported on the surface of three-dimensional (3D) flower-like ZnO nanostructure were synthesized by a microwave-assisted solution method. The obtained products were characterized by X-ray diffraction analysis, field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectrophotometry, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The analytical results confirmed homogeneously distributed Ag nanoparticles supported on the surface of flower-like ZnO nanostructure. The photocatalytic effect of the heterostructure Ag/ZnO nanocomposites was investigated using photodegradation under ultraviolet (UV) light of methylene blue as model dye. The heterostructure Ag/ZnO nanocomposites exhibited much higher photocatalytic activity than pure ZnO flowers. The improved photocatalytic properties are attributed to formation of a Schottky barrier at the metal–semiconductor interface of the Ag/ZnO nanocomposites.  相似文献   

17.
The present study focused on the green synthesis of silver nanoparticles (AgNPs) using Arachis hypogaea (ground nut) root extract for the antibacterial and clinical application. The presence of major phytochemical compounds are found to be 2H-Pyaran,2,5-diethenyltetrahydro, Didodecyl phthalate, Decanoic acid, Tetradecanoic acid, Bis(2-ethylhexyl) phthalate, Dodecanoic acid, Phosphonic acid, 2-(4-Methoxyphenyl)-5-(4-methoxynaphthyl) thiophene and Methyl 2-(N-Benzylimino)-4-chloro-3,3-dimethylbutanoate by GC–MS. Nanoparticles synthesis is confirmed by UV–Vis analysis by observing the maximum absorption spectrum at 450 nm. XRD and SEM–EDX results reveals the synthesized nanoparticles are cubic crystalline with agglomerated particles of silver oxide with biomolecules present around it. TEM images clearly shows that the biosynthesized nanoparticles are mostly spherical and irregular shaped with an average particles size of 30 nm. Highest susceptibility pattern of silver nanoparticle against Enterococcus sp. (35 ± 0.4 mm) which followed by Pseudomonas sp. (33 mm) and Staphylococcus aureus (29 mm). Green synthesized nanoparticles are coated over the commercially available clinical band aid cloth by dip coating method. Silver nanoparticle incorporated band aid cloth showed good antibacterial activity against the harmful bacteria which usually cause infection and interfere during wound healing. Our findings revealed that green nanoparticle has a good antibacterial action against harmful bacteria and showed good response for efficient clinical application.  相似文献   

18.
The functionalization of photocatalytic metal oxide nanoparticles of TiO2, ZnO, WO3 and CuO with amine-terminated (oleylamine) and thiol-terminated (dodecane-1-thiol) alkyl-chain ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO2 and WO3, whereas dodecane-1-thiol binds stably only to ZnO and CuO. Similarly, polar-to-nonpolar solvent phase transfer of TiO2 and WO3 nanoparticles could be achieved by using oleylamine, but not dodecane-1-thiol, whereas the opposite holds for ZnO and CuO. The surface chemistry of ligand-functionalized nanoparticles was probed by attenuated total reflectance (ATR)-FTIR spectroscopy, which enabled the occupation of the ligands at the active sites to be elucidated. The photostability of the ligands on the nanoparticle surface was determined by the photocatalytic self-cleaning properties of the material. Although TiO2 and WO3 degrade the ligands within 24 h under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, because the ligand-functionalized nanoparticles are hydrophobic in nature, they can be self-assembled at the air-water interface to give nanoparticle films with demonstrated photocatalytic as well as anti-fogging properties.  相似文献   

19.
Monodisperse ZnO colloidal spheres were produced by a two-stage sol–gel reaction process. The sub-micrometer sized ZnO/Ag composite spheres were prepared by photodeposition route. The photochemical reduction method needs no other reductant or surfactant and is an effective means to enable the uniform distribution of Ag nanoparticles (NPs) over the ZnO spheres. The size and shape as well as the optical properties of the composites were characterized with transmission electron microscopy and UV–Vis spectroscopy. The results showed that average size of ZnO and Ag NPs among the composites was around 480, 10 nm, respectively. Ag NPs were relatively monodisperse, presented spherical shape, and their deposition over the ZnO surface was uniform. Formation of Ag NPs on the surface of ZnO spheres was confirmed by X-ray diffraction and X-ray photoelectron spectroscopy, and the catalytic performance and antibacterial activity was also investigated. The ZnO/Ag composites possess excellent catalytic performance for catalytic reduction of 4-nitrophenol to 4-aminophenol and can effectively inhibit Escherichia coli and Bacillus subtilis growth at 0.25 mg/mL.  相似文献   

20.
Green synthesis of TiO2 nanoparticles (NPs) from Prunus × yedoensis leaf extract (PYLE), and their application for removal of phosphate and their antibacterial activity, were studied for the first time. NPs were obtained using a green chemistry approach from 0.1 M TiO2 and PYLE at ratio of 1:1 (v/w). Initial confirmation of production of TiO2 NPs was provided by a color change from white to light yellow, then calcination was performed at 500 °C for 1 h. The TiO2 NPs were characterized using various analytical techniques such as ultraviolet–visible (UV–Vis) spectroscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, UV–Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. The results indicated that the optimal amount of TiO2 NPs for removal of phosphate was 10 mg/l (10 ppm) with duration of 25 min. Furthermore, the antibacterial activity of TiO2 NPs was also investigated using two different bacteria (Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli) in aqueous medium. The results revealed highly efficient sunlight-driven photocatalytic and antibacterial activity of TiO2 NPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号