首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method for carbonic anhydrase II (CA II) absolute quantification in human serum is presented. This method is based on high-performance liquid chromatography (HPLC)-Chip microfluidic device incorporating a nanoelectrospray source interfaced to a triple quadrupole mass spectrometer. The fraction containing CA II was isolated by preparative reversed-phase HPLC, and peptides obtained from the tryptic digest of the protein mixture were separated by the HPLC-Chip system. The multiple-reaction monitoring acquisition mode of a selected suitable CA II peptide and peptide internal standard allowed the selective and sensitive determination of a CA II. Absolute recovery of the method was 52 ± 12%, while analytical recovery was 81 ± 10%. For the eight samples analyzed, the matrix effect was found to be only −14 ± 6%. A comparison among three regression lines type which were obtained by external calibration, matrix-matched calibration, and standard addition method, respectively, demonstrated that the first one is adequate in obtaining good accuracy and precision. Method quantification limit for CA II in serum was estimated to be 2 fmol/mL. CA II mean concentration in sera from eight healthy subjects was found to be 56 pmol/mL (relative standard deviation 24%).  相似文献   

2.
Organophosphate triesters tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate are widely used flame retardants (FRs) present in many products common to human environments, yet understanding of human exposure and health effects of these compounds is limited. Monitoring urinary metabolites as biomarkers of exposure can be a valuable aid for improving this understanding; however, no previously published method exists for the analysis of the primary TDCPP metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCPP), in human urine. Here, we present a method to extract the metabolites BDCPP and diphenyl phosphate (DPP) in human urine using mixed-mode anion exchange solid phase extraction and mass-labeled internal standards with analysis by atmospheric pressure chemical ionization liquid chromatography tandem mass spectrometry. The method detection limit was 8 pg mL−1 urine for BDCPP and 204 pg mL−1 for DPP. Recoveries of analytes spiked into urine ranged from 82 ± 10% to 91 ± 4% for BDCPP and from 72 ± 12% to 76 ± 8% for DPP. Analysis of a small number of urine samples (n = 9) randomly collected from non-occupationally exposed adults revealed the presence of both BDCPP and DPP in all samples. Non-normalized urinary concentrations ranged from 46–1,662 pg BDCPP mL−1 to 287–7,443 pg DPP mL−1, with geometric means of 147 pg BDCPP mL−1 and 1,074 pg DPP mL−1. Levels of DPP were higher than those of BDCPP in 89% of samples. The presented method is simple and sufficiently sensitive to detect these FR metabolites in humans and may be applied to future studies to increase our understanding of exposure to and potential health effects from FRs.  相似文献   

3.
Homocitrulline (HCit), an amino acid formed by the carbamylation of ε-amino groups of lysine residues, is considered a promising biomarker for monitoring diseases such as chronic renal failure and atherosclerosis. This paper describes a tandem mass spectrometric method for total, protein-bound and free HCit measurement in plasma samples. HCit was separated from other plasma components by hydrophilic interaction liquid chromatography. Detection was achieved by monitoring transitions of 190.1 > 127.1 and 190.1 > 173.1 for HCit, and 183.1 > 120.2 for d7-citrulline used as internal standard. This method allowed HCit quantification within 5.2 min and was precise (inter-assay CV < 5.85%), accurate (mean recoveries ranging from 97% to 106%), and exhibited a good linearity from 10 nmol/L to 1.6 μmol/L. Plasma samples from control and uremic mice (n = 10) were analyzed. In control mice, mean total plasma HCit concentration was 0.78 ± 0.12 μmol/mol amino acids, whereas it was increased 2.7-fold in uremic mice plasma, reaching 2.10 ± 0.50 μmol/mol amino acids (p < 0.001). In conclusion, this method exhibits good analytical performances and meets the criteria of sensitivity suitable for HCit concentration assessment in plasma samples.  相似文献   

4.
The development of a simple and rapid high-performance liquid chromatography (HPLC) method for the determination of the new antiepileptic drug rufinamide (RFN) in human plasma and saliva is reported. Samples (250 μl) are alkalinized with ammonium hydroxide (pH 9.25) and extracted with dichloromethane using metoclopramide as internal standard. Separation is achieved with a Spherisorb silica column (250 × 4.6 mm i.d., 5 μm) at 30 °C using as mobile phase a solution of methanol/dichloromethane/n-hexane 10/25/65 (vol/vol/vol) mixed with 6 ml ammonium hydroxide. The instrument used was a Shimadzu LC-10Av chromatograph and flow rate was 1.5 ml min-1, with a LaChrom L-7400 UV detector set at 230 nm. Calibration curves are linear [r 2 = 0.998 ± 0.002 for plasma (n = 10) and r 2 = 0.999 ± 0.001 for saliva (n = 9)] over the range of 0.25–20.0 μg ml-1, with a limit of quantification at 0.25 μg ml-1. Precision and accuracy are within current acceptability standards. The assay is suitable for pharmacokinetic studies in humans and for therapeutic drug monitoring.  相似文献   

5.
A high-performance liquid chromatography (LC)–tandem mass spectrometry (MS/MS) method has been developed and validated for the determination of 19 drugs of abuse and metabolites and used in whole blood. The following compounds were included: amphetamine, methylenedioxyamphetamine, methylenedioxyethylamphetamine, methylenedioxymethamphetamine, methamphetamine, cocaine, benzoylecgonine, morphine, 6-acetylmorphine, codeine, methadone, buprenorphine, norbuprenorphine, ketobemidone, tramadol, O-desmethyltramadol, zaleplone, zolpidem, and zopiclone. The sample pretreatment consisted of solid-phase extraction using mixed-mode columns (Isolute Confirm HCX). Deuterated analogues were used as internal standards for all analytes, except for ketobemidone and O-desmethyltramadol. The analytes were separated by a methanol/ammonium formate gradient using high-performance LC (Agilent HPLC 1100) with a 3 mm × 100 mm Varian Pursuit 3 C18 column, 3-μm particle size, and were quantified by MS/MS (Waters Quattro micro tandem quadrupole mass spectrometer) using multiple reaction monitoring in positive mode. Two transitions were used for all analytes, except for tramadol and O-desmethyltramadol. The run time of the method was 35 min including the equilibration time. For all analytes, responses were linear over the range investigated, with R 2 > 0.99. One-point calibration was found to be adequate by validation, thereby saving analysis of multiple calibrators. The limits of quantification (LOQs) for the analytes ranged from 0.0005 to 0.01 mg/kg. Absolute recoveries of the analytes were from 34 to 97%, except for zaleplone (6%). Both the interday precision and the intraday precision were less than 15% (20% at the LOQ) for all analytes, except buprenorphine, norburprenorphine, and zaleplone (less than 18%). Accuracy (bias) was within ±15% (±20% at the LOQ) for all analytes, except MDMA and O-desmethyltramadol (within ±19%). No ion suppression or enhancement was seen nor was suppression from coeluted analytes seen. Matrix effects were found to be less than 23% for all analytes, except zopiclone (64%). High-concentration and low-concentration quality control samples gave acceptable values, and the method has been tried in international proficiency test schemes with good results. The present LC-MS/MS method provides a simple, specific, and sensitive solution for the quantification of some of the most frequent drugs of abuse and their metabolites in whole blood. The quantification by LC-MS/MS was successfully applied to 412 forensic cases from October 2008 to mid February 2009, where 267 cases were related to zero-tolerance traffic legislation.  相似文献   

6.
A sensitive LC-MS/MS assay for quantification of total and free concentrations of R- and S-warfarin in plasma was required to support clinical studies on warfarin enantiomers. Several ultrafiltration devices were evaluated for separation of free warfarin from plasma proteins. The highest precision and lowest non-specific binding was obtained for Centrifree ultrafiltration devices. R- and S-warfarin were extracted from plasma (total) and ultrafiltrate (free) by liquid–liquid extraction with methyl tert-butyl ether using d6-warfarin as internal standard. Mean extraction recovery was 68 ± 4%. The enantiomers were separated on a Chirobiotic V column with isocratic elution using 40% methanol and 0.03% acetic acid in water. Negative mode electrospray ionisation was used for MS/MS detection, monitoring the ion transition m/z 307/161. Calibration curves (quadratic, weighted 1/x) were fitted over the range of 20–2,000 ng/ml (r 2 ≥ 0.995) in plasma and 0.5–20 ng/ml (r 2 ≥ 0.998) in ultrafiltrate. The lower limit of quantification for R- and S-warfarin was 0.5 ng/ml in ultrafiltrate. Intra- and interday precision (% RSD) and bias were within 10% in all cases, and matrix effects were negligible. The assay was applied successfully to analysis of samples from clinical studies.  相似文献   

7.
A fast and sensitive liquid chromatography–mass spectrometry method was developed for the determination of ursolic acid (UA) in rat plasma and tissues. Glycyrrhetinic acid was used as the internal standard (IS). Chromatographic separation was performed on a 3.5 μm Zorbax SB-C18 column (30 mm × 2.1 mm) with a mobile phase consisting of methanol and aqueous 10 mM ammonium acetate using gradient elution. Quantification was performed by selected ion monitoring with (m/z) 455 for UA and (m/z) 469 for the IS. The method was validated in the concentration range of 2.5 − 1470 ng mL−1 for plasma samples and 20 − 11760 ng g−1 for tissue homogenates. The intra- and inter-day assay of precision in plasma and tissues ranged from 1.6% to 7.1% and 3.7% to 9.0%, respectively, and the intra- and inter-day assay accuracy was 84.2 − 106.9% and 82.1 − 108.1%, respectively. Recoveries in plasma and tissues ranged from 83.2% to 106.2%. The limits of detections were 0.5 ng mL−1 or 4.0 ng g−1. The recoveries for all samples were >90%, except for liver, which indicated that ursolic acid may metabolize in liver. The main pharmacokinetic parameters obtained were T max = 0.42 ± 0.11 h, C max = 1.10 ± 0.31 μg mL−1, AUC = 1.45 ± 0.21 μg h mL−1 and K a = 5.64 ± 1.89 h−1. The concentrations of UA in rat lung, spleen, liver, heart, and cerebellum were studied for the first time. This method is validated and could be applicable to the investigation of the pharmacokinetics and tissue distribution of UA in rats.  相似文献   

8.
Serotonin (5-hydroxytryptamine, 5-HT) plays vital roles in regulating gastrointestinal functions. Thus, the detection of 5-HT in the gastrointestinal tract is of great importance for biomedical research, medical diagnosis, and pharmaceutical therapy. This paper presents a simple, sensitive, and fast method for the quantification of luminally released serotonin in the feces and tissues of the rat proximal colon by means of capillary electrophoresis with laser-induced fluorescence detection. 5-Carboxyfluorescein N-succinimidyl ester was used for precolumn derivatization of serotonin. The optimal separation and detection conditions were obtained with an electrophoretic buffer containing 60 mM borate (pH 8.90) and an air-cooled argon-ion laser (excitation at 488 nm, emission at 520 nm). The serotonin concentrations in the feces and tissues of proximal colons were analyzed with this method, and the average values of serotonin in the feces samples were 1.951 ± 0.446 ng/mg (male) and 2.095 ± 0.533 ng/mg (female) and 1.397 ± 0.267 ng/mg in rat proximal colon tissues. The results demonstrate that this method can accurately determine luminally released 5-HT in rats.  相似文献   

9.
Serotonin emerges as crucial neurotransmitter and hormone in a growing number of different physiologic processes. Besides extensive serotonin production previously noted in patients with metastatic carcinoid tumors, serotonin now is implicated in liver cell regeneration and bone formation. The aim was to develop a rapid, sensitive, and highly selective automated on-line solid-phase extraction method coupled to high-performance liquid chromatography–tandem mass spectrometry (XLC-MS/MS) to quantify low serotonin concentrations in matrices such as platelet-poor plasma and urine. Fifty microliters plasma or 2.5 μL urine equivalent were pre-purified by automated on-line solid-phase extraction, using weak cation exchange. Chromatography of serotonin and its deuterated internal standard was performed with hydrophilic interaction chromatography. Mass spectrometric detection was operated in multiple reaction monitoring mode using a quadrupole tandem mass spectrometer with positive electrospray ionization. Serotonin concentrations were determined in platelet-poor plasma of metastatic carcinoid patients (n = 23) and healthy controls (n = 22). Urinary reference intervals were set by analyzing 24-h urine collections of 120 healthy subjects. Total run-time was 6 min. Intra- and inter-assay analytical variation were <10%. Linearity in the 0–7300 μmol/L calibration range was excellent (R2 > 0.99). Quantification limits were 30 and 0.9 nmol/L in urine and plasma, respectively. Platelet-poor serotonin concentrations in metastatic carcinoid patients were significantly higher than in controls. The urinary reference interval was 10–78 μmol/mol creatinine. Serotonin analysis with sensitive and specific XLC-MS/MS overcomes limitations of conventional HPLC. This enables accurate quantification of serotonin for both routine diagnostic procedures and research in serotonin-related disorders.  相似文献   

10.
Propofol in exhaled breath can be detected and monitored in real time by ion molecule reaction mass spectrometry (IMR-MS). In addition, propofol concentration in exhaled breath is tightly correlated with propofol concentration in plasma. Therefore, real-time monitoring of expiratory propofol could be useful for titrating intravenous anesthesia, but only if concentration changes in plasma can be determined in exhaled breath without significant delay. To evaluate the utility of IMR-MS during non-steady-state conditions, we measured the time course of both expiratory propofol concentration and the processed electroencephalography (EEG) as a surrogate outcome for propofol effect after an IV bolus induction of propofol. Twenty-one patients scheduled for routine surgery were observed after a bolus of 2.5 mg kg−1 propofol for induction of anesthesia. Expiratory propofol was measured using IMR-MS and the cerebral propofol effect was estimated using the bispectral index (BIS). Primary endpoints were time to detection of expiratory propofol and time to onset of propofol’s effect on BIS, and the secondary endpoint was time to peak effect (highest expiratory propofol or lowest BIS). Expiratory propofol and changes in BIS were first detected at 43 ± 21 and 49 ± 11 s after bolus injection, respectively (P = 0.29). Peak propofol concentrations (9.2 ± 2.4 parts-per-billion) and lowest BIS values (23 ± 4) were reached after 208 ± 57 and 219 ± 62 s, respectively (P = 0.57). Expiratory propofol concentrations measured by IMR-MS have similar times to detection and peak concentrations compared with propofol effect as measured by the processed EEG (BIS). This suggests that expiratory propofol concentrations may be useful for titrating intravenous anesthesia.  相似文献   

11.
An electrospray ionization tandem mass spectrometric (ESI-MS-MS) method has been developed for the determination of cyanide (CN) in blood. Five microliters of blood was hemolyzed with 50 μL of water, then 5 μL of 1 M tetramethylammonium hydroxide solution was added to raise the pH of the hemolysate and to liberate CN from methemoglobin. CN was then reacted with NaAuCl4 to produce dicyanogold, Au(CN)2, that was extracted with 75 μL of methyl isobutyl ketone. Ten microliters of the extract was injected directly into an ESI-MS-MS instrument and quantification of CN was performed by selected reaction monitoring of the product ion CN at m/z 26, derived from the precursor ion Au(CN)2 at m/z 249. CN could be measured in the quantification range of 2.60 to 260 μg/L with the limit of detection at 0.56 μg/L in blood. This method was applied to the analysis of clinical samples and the concentrations of CN in the blood were as follows: 7.13 ± 2.41 μg/L for six healthy non-smokers, 3.08 ± 1.12 μg/L for six CO gas victims, 730 ± 867 μg for 21 house fire victims, and 3,030 ± 97 μg/L for a victim who ingested NaCN. The increase of CN in the blood of a victim who ingested NaN3 was confirmed using MS-MS for the first time, and the concentrations of CN in the blood, gastric content and urine were 78.5 ± 5.5, 11.8 ± 0.5, and 11.4 ± 0.8 μg/L, respectively.  相似文献   

12.
Pyrethroid insecticides widely used in forestry, agricultural, industrial, and residential applications have potential for human exposure. Short sample preparation time and sensitive, economical high-throughput assays are needed for biomonitoring studies that analyze a large number of samples. An enzyme-linked immunosorbent assay (ELISA) was used for determining 3-phenoxybenzoic acid (3-PBA), a general urinary biomarker of exposure to some pyrethroid insecticides. A mixed-mode solid-phase extraction reduced interferences from acid hydrolyzed urine and gave 110 ± 6% recoveries from spiked samples. The method limit of quantification was 2 μg/L. Urine samples were collected from forestry workers that harvest pine cone seeds where pyrethroid insecticides were applied at ten different orchards. At least four samples for each worker were collected in a 1-week period. The 3-PBA in workers classified as high, low, or no exposure based on job analysis over all sampling days was 6.40 ± 9.60 (n = 200), 5.27 ± 5.39 (n = 52), and 3.56 ± 2.64 ng/mL (n = 34), respectively. Pair-wise comparison of the differences in least squares means of 3-PBA concentrations among groups only showed a significant difference between high and no exposure. Although this difference was not significant when 3-PBA excretion was normalized by creatinine excretion, the general trend was still apparent. No significant differences were observed among days or orchards. This ELISA method using a 96-well plate was performed as a high-throughput tool for analyzing around 300 urine samples measured in triplicate to provide data for workers exposure assessment.  相似文献   

13.
The objective of the present study was to investigate mesocarb metabolism in humans. Samples obtained after administration of mesocarb to healthy volunteers were studied. The samples were extracted at alkaline pH using ethyl acetate and salting-out effect to recover metabolites excreted free and conjugated with sulfate. A complementary procedure was applied to recover conjugates with glucuronic acid or with sulfate consisting of the extraction of the urines with XAD-2 columns previously conditioned with methanol and deionized water; the columns were then washed with water and finally eluted with methanol. In both cases, the dried extracts were reconstituted and analyzed by ultra-performance liquid chromatography–tandem mass spectrometry. Chromatographic separation was carried out using a C18 column (100 mm × 2.1 mm i.d., 1.7 μm particle size) and a mobile phase consisting of water and acetonitrile with 0.01% formic acid with gradient elution. The chromatographic system was coupled to a mass spectrometer with an electrospray ionization source working in positive mode. Metabolic experiments were performed in multiple-reaction monitoring mode by monitoring one transition for each potential mesocarb metabolite. Mesocarb and 19 metabolites were identified in human urine, including mono-, di-, and trihydroxylated metabolites excreted free as well as conjugated with sulfate or glucuronic acid. All metabolites were detected up to 48 h after administration. The structures of most metabolites were proposed based on data from reference standards available and molecular mass and product ion mass spectra of the peaks detected. The direct detection of mesocarb metabolites conjugated with sulfate and glucuronic acid without previous hydrolysis has been described for the first time. Finally, a screening method to detect the administration of mesocarb in routine antidoping control analyses was proposed and validated based on the detection of the main mesocarb metabolites in human urine (p-hydroxymesocarb and p-hydroxymesocarb sulfate). After analysis of several blank urines, the method demonstrated to be specific. Extraction recoveries of 100.3 ± 0.8 and 105.9 ± 10.8 (n = 4), and limits of detection of 0.5 and 0.1 ng mL−1 were obtained for p-hydroxymesocarb sulfate and p-hydroxymesocarb, respectively. The intra- and inter-assay precisions were estimated at two concentration levels, 50 and 250 ng mL−1, and relative standard deviations were lower than 15% in all cases (n = 4).  相似文献   

14.
The aim of the proposed work was to develop and validate a simple and sensitive assay for the analysis of atorvastatin (ATV) acid, ortho- and para-hydroxy-ATV, ATV lactone, and ortho- and para-hydroxy-ATV lactone in human plasma using liquid chromatography-tandem mass spectrometry. All six analytes and corresponding deuterium (d5)-labeled internal standards were extracted from 50 μL of human plasma by protein precipitation. The chromatographic separation of analytes was achieved using a Zorbax-SB Phenyl column (2.1 mm × 100 mm, 3.5 μm). The mobile phase consisted of a gradient mixture of 0.1% v/v glacial acetic acid in 10% v/v methanol in water (solvent A) and 40% v/v methanol in acetonitrile (solvent B). All analytes including ortho- and para-hydroxy metabolites were baseline-separated within 7.0 min using a flow rate of 0.35 mL/min. Mass spectrometry detection was carried out in positive electrospray ionization mode, with multiple-reaction monitoring scan. The calibration curves for all analytes were linear (R 2 ≥ 0.9975, n = 3) over the concentration range of 0.05–100 ng/mL and with lower limit of quantitation of 0.05 ng/mL. Mean extraction recoveries ranged between 88.6–111%. Intra- and inter-run mean percent accuracy were between 85–115% and percent imprecision was ≤ 15%. Stability studies revealed that ATV acid and lactone forms were stable in plasma during bench top (6 h on ice-water slurry), at the end of three successive freeze and thaw cycles and at −80 °C for 3 months. The method was successfully applied in a clinical study to determine concentrations of ATV and its metabolites over 12 h post-dose in patients receiving atorvastatin.  相似文献   

15.
A method is demonstrated for analysis of vitamin D fortified dietary supplements that eliminates virtually all chemical pretreatment prior to analysis, which is referred to as a “dilute-and-shoot” method. Three mass spectrometers, in parallel, plus a UV detector, an evaporative light-scattering detector (ELSD), and a corona charged aerosol detector (CAD) were used to allow a comparison of six detectors simultaneously. Ultraviolet data were analyzed using internal standard, external standard, and response factor approaches. The contents of gelcaps that contained 2,000 IU (50 μg) vitamin D3 in rice bran oil, diluted to 100 mL, were analyzed without the need for lengthy saponification and extraction. Vitamin D3 was analyzed using UV detection, extracted ion chromatograms, selected ion monitoring (SIM) atmospheric pressure chemical ionization mass spectrometry (APCI-MS), and two transitions of multiple reaction monitoring (MRM) APCI-MS. The internal standard, external standard, and response factor methods gave values of 0.5870 ± 0.0045, 0.5893 ± 0.0041, and 0.5889 ± 0.0045 μg/mL, respectively, by UV detection. The values obtained by MS were 0.6117 ± 0.0140, 0.6018 ± 0.0244, and 0.5848 ± 0.0146 μg/mL by SIM and two transitions of MRM, respectively. The triacylglycerols in the oils were analyzed using full-scan APCI-MS, electrospray ionization (ESI) MS, up to MS4, an ELSD, and a CAD. The method proved to be very sensitive for vitamin D3, as well as triacylglycerols (TAGs), allowing identification of intact TAGs containing fatty acids up to 28 carbons in length. LC-ESI-MS of glycerin polymers is also demonstrated.  相似文献   

16.
A novel simple, sensitive, selective, and rapid high-performance liquid chromatography coupled with tandem mass spectrometry method was developed and validated for quantification of riluzole in human plasma. The chromatography was performed by using a Zorbax-SB-C18 (4.6 × 75 mm, 3.5 μm) column , isocratic mobile phase 0.1% formic acid/acetonitrile (10:90 v/v), and an isotope-labeled internal standard (IS), [13C,15N2]riluzole. The extraction of drug and internal standard was performed by liquid–liquid extraction and analyzed by MS in the multiple reaction monitoring (MRM) mode using the respective [M+H]+ ions, m/z 235.0/165.9 for riluzole and m/z 238.1/169.0 for the IS. The calibration curve was linear over the concentration range 0.5–500.0 ng/ml for riluzole in human plasma. The limit of quantification (LOQ) was demonstrated at 0.5 ng/ml. The within-batch and between-batch precision were 0.6–2.3% and 1.4–5.7%, and accuracy was 97.1–101.1% and 98.8–101.2% for riluzole respectively. Drug and IS were eluted within 3.0 min. The validated method was successfully applied in a bioequivalence study of riluzole in human plasma.  相似文献   

17.
Experimental work performed was aimed at the assessment of a competitive capillary electrophoresis immunoassay with laser-induced fluorescence (CEIA-LIF) detection for the determination of the Cry1Ab endotoxin from Bacillus thuringensis. The binding constant of a monoclonal antibody, raised against the insecticide protein Cry1Ab, was determined on a microplate by indirect enzyme-linked immunosorbent assay (ELISA) and compared with that obtained in-capillary under nonequilibrium separation conditions. The two binding constants appear comparable—(5.0 ± 1.2) × 106 M−1 and (9.06 ± 5.7) × 106 M−1—reflecting good preservation of the antibody binding behavior in the capillary electrophoresis format. These results allow use of a calibration curve possible between 0.2 and 150 nM of endotoxin protein, with a limit of detection of 0.5 nM (33 μg L−1). Preliminary recovery experiments on maize extracts spiked with known amounts of Cry1Ab endotoxin also showed promising results in detecting the toxin in complex real matrices.  相似文献   

18.
Authors developed a simple, sensitive, selective, rapid, rugged, and reproducible liquid chromatography–tandem mass spectrometry method for the quantification of eletriptan (EP) in human plasma using naratriptan (NP) as an internal standard (IS). Chromatographic separation was performed on Ascentis Express C18, 50 × 4.6 mm, 2.7 μm column. Mobile phase was composed of 0.1% formic acid: methanol (40:60 v/v), with 0.5 mL/min flow rate. Drug and IS were extracted by liquid–liquid extraction. EP and NP were detected with proton adducts at m/z 383.2→84.3 and 336.2→97.8 in multiple reaction monitoring (MRM) positive mode, respectively. The method was validated with the correlation coefficients of (r 2) ≥ 0.9963 over a linear concentration range of 0.5–250.0 ng/mL. This method demonstrated intra- and inter-day precision within 1.4–9.2% and 4.4–5.5% and accuracy within 96.8–103% and 98.5–99.8% for EP. This method is successfully applied in the bioequivalence study of 24 human volunteers.  相似文献   

19.
A method for determining the size of silver nanoparticles and their quantification by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (ICP-MS) is proposed and was tested in consumer products. Experimental conditions were studied in detail to avoid aggregation processes or alteration of the original size distributions. Additionally, losses from sorption processes onto the channel membrane were minimized for correct quantification of the nanoparticles. Mobile phase composition, injection/focusing, and fractionation conditions were evaluated in terms of their influence on both separation resolution and recovery. The ionic strength, pH, and the presence of ionic and nonionic surfactants had a strong influence on both separation and recovery of the nanoparticles. In general, better results were obtained under those conditions that favored charge repulsions with the membrane. Recovery values of 83 ± 8% and 93 ± 4% with respect to the content of silver nanoparticles were achieved for the consumer products studied. Silver nanoparticle standards were used for size calibration of the channel. The results were compared with those obtained by photon correlation spectroscopy and images taken by transmission electron microscopy. The quantification of silver nanoparticles was performed by direct injection of ionic silver standard solutions into the ICP-MS system, integration of the corresponding peaks, and interpolation of the fractogram area. A limit of detection of 5.6 μg L-1 silver, which corresponds to a number concentration of 1×1012 L-1 for nanoparticles of 10 nm, was achieved for an injection volume of 20 μL.  相似文献   

20.
One of the limits of current electrochemical biosensors is a lack of methods providing stable and highly efficient junctions between biomaterial and solid-state devices. This paper shows how laser-induced forward transfer (LIFT) can enable efficient electron transfer from photosynthetic biomaterial immobilized on screen-printed electrodes (SPE). The ideal pattern, in terms of photocurrent signal of thylakoid droplets giving a stable response signal with a current intensity of approximately 335 ± 13 nA for a thylakoid mass of 28 ± 4 ng, was selected. It is shown that the efficiency of energy production of a photosynthetic system can be strongly enhanced by the LIFT process, as demonstrated by use of the technique to construct an efficient and sensitive photosynthesis-based biosensor for detecting herbicides at nanomolar concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号