首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report increased stimulation of dendritic cells via heterodimers of immunostimulants formed at a discrete molecular distance. Many vaccines present spatially organized agonists to immune cell receptors. These receptors cluster suggesting that signaling is increased by spatial organization and receptor proximity, but this has not been directly tested for multiple, unique receptors. In this study we probe the spatial aspect of immune cell activation using heterodimers of two covalently attached immunostimulants.  相似文献   

2.
Adoptive T lymphocyte (T cell) transfer and tumour-specific peptide vaccines are innovative cancer therapies. An accurate assessment of the specific reactivity of T cell receptors (TCRs) to tumour antigens is required because of the high heterogeneity of tumour cells and the immunosuppressive tumour microenvironment. In this study, we report a label-free electrochemiluminescence (ECL) imaging approach for recognising and discriminating between TCRs and tumour-specific antigens by imaging the immune synapses of T cells. Various T cell stimuli, including agonistic antibodies, auxiliary molecules, and tumour-specific antigens, were modified on the electrode's surface to allow for their interaction with T cells bearing different TCRs. The formation of immune synapses activated by specific stimuli produced a negative (shadow) ECL image, from which T cell antigen recognition and discrimination were evaluated by analysing the spreading area and the recognition intensity of T cells. This approach provides an easy way to assess TCR-antigen specificity and screen both of them for immunotherapies.  相似文献   

3.
A new approach to enhancing the effectiveness of vaccines is to deliver antigens selectively to dendritic cells (DC) in situ, via monoclonal antibodies specific for particular DC surface molecules. This can markedly enhance CTL responses and, via helper T cells, also enhance antibody responses. DC activation agents or adjuvants must also be administered for effective CTL responses, but in some cases good antibody responses can be obtained without adjuvants. Here we review the role of different DC subsets and different DC target molecules in obtaining enhanced immune responses.  相似文献   

4.
We show that a molecular scaffold can be utilized to convert a receptor binding aptamer into a receptor agonist. Many receptors (including tumor necrosis receptor family members) are activated when they are multimerized on the cell surface. Molecular scaffolds have been utilized to assemble multiple receptor binding peptide ligands to generate activators of such receptors. We demonstrate that an RNA aptamer that recognizes OX40, a member of the tumor necrosis factor receptor superfamily, can be converted into a receptor-activating aptamer by assembling two copies on an olignucleotide-based scaffold. The OX40 receptor-activating aptamer is able to induce nuclear localization of nuclear factor-kappaB, cytokine production, and cell proliferation, as well as enhance the potency of dendritic cell-based tumor vaccines when systemically delivered to mice.  相似文献   

5.
The relatively straightforward methods of designing and assembling various functional nucleic acids into nanoparticles offer advantages for applications in diverse diagnostic and therapeutic approaches. However, due to the novelty of this approach, nucleic acid nanoparticles (NANPs) are not yet used in the clinic. The immune recognition of NANPs is among the areas of preclinical investigation aimed at enabling the translation of these novel materials into clinical settings. NANPs’ interactions with the complement system, coagulation systems, and immune cells are essential components of their preclinical safety portfolio. It has been established that NANPs’ physicochemical properties—composition, shape, and size—determine their interactions with immune cells (primarily blood plasmacytoid dendritic cells and monocytes), enable recognition by pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), and mediate the subsequent cytokine response. However, unlike traditional therapeutic nucleic acids (e.g., CpG oligonucleotides), NANPs do not trigger a cytokine response unless they are delivered into the cells using a carrier. Recently, it was discovered that the type of carrier provides an additional tool for regulating both the spectrum and the magnitude of the cytokine response to NANPs. Herein, we review the current knowledge of NANPs’ interactions with various components of the immune system to emphasize the unique properties of these nanomaterials and highlight opportunities for their use in vaccines and immunotherapy.  相似文献   

6.
The immune system is concerned with the recognition and disposal of foreign or "non self" molecules or cells that enter the body of an immunologically competent individual. The generation of an immune response depends on the interaction of components, namely, the immunogen (nonself or foreign cell or molecule), antibody producing humoral immune system, and sensitized lymphocyte producing cellular immune system. An immunogen possesses surface structures referred to as epitopes; the precise pattern of each epitope enables an individual's immune system to recognize cells or molecules as self or immunogens. During the recognition process, the specific cells known as macrophages identify the epitope structures on the immunogen and save them in the form of short peptides 10-18 amino-acids-long known as immune dominant peptides (IDPs). IDPs are then bound with surface proteins on macrophages known as MHC protein complexes. The macrophages then present this IDP-MHC complex to a T cell that possesses a specific receptor that is specific for the foreign epitope on the IDP bound to MHC complex. This initiates an immune system cascade that results in the disposal of the immunogen. The study and accurate prediction of T-cell epitopes is, thus, very important for designing vaccines against pathogenic diseases. The present study applied the newly developed biosupport vector machine to the T-cell epitope data. This new algorithm introduces a biobasis function into the conventional support vector machines so that the nonnumerical attributes (amino acids) in protein sequences can be recognized without a feature extraction process, which often fails to properly code the biological content in protein sequences. The prediction accuracy of a 10-fold cross validation is 90.31%, compared with 87.86% using support vector machines reported as the best compared with other algorithms in an earlier study.  相似文献   

7.
Inflammatory immune responses are mediated by signaling molecules that are both produced by and recognized across highly heterogeneous cell populations. As such, the study of inflammation using traditional immunostimulants is complicated by paracrine and autocrine signaling, which obscures the origin of a propagating response. To address this challenge, we developed a small‐molecule probe that can photosensitize immune cells, thus allowing light‐mediated inflammation. This probe was used to control the origin of inflammation using light. Following this motif, inflammation was initiated from fibroblasts or dendritic cells. The contributions of fibroblasts and dendritic cells in initiating inflammation in heterogeneous co‐culture are reported, thus providing insights into the future development of vaccines and treatment of inflammation.  相似文献   

8.
Adaptive humoral immunity to extracellular bacteria is largely mediated by antibody specific for both protein and polysaccharide antigens. Proteins and polysaccharides are biochemically distinct, and as a result are processed differently by the immune system, leading to different mechanistic pathways for eventual elicitation of specific Ig isotypes. Much of our current knowledge concerning the parameters underlying anti-protein and anti-polysaccharide Ig responses have come from studies using soluble, purified antigens. However, the lessons learned from these studies are not entirely applicable to the mechanisms underlying physiologic anti-protein and anti-polysaccharide Ig responses to intact bacteria. Specifically, unlike isolated, soluble antigens, intact bacteria are complex particulate immunogens in which multiple protein and polysaccharide antigens, and bacterial adjuvants (e.g. Toll-like receptor ligands) are co-expressed, indeed often physically linked. In this review, data from a series of recent studies are discussed in which heat-killed, intact Streptococcus pneumoniae was used as an immunogen to study the mechanisms underlying in vivo anti-protein and anti-polysaccharide Ig isotype induction. An unexpected role for CD4(+) T cells and dendritic cells for induction of IgG anti-polysaccharide responses by intact bacteria is discussed, and shown to have distinct mechanistic features from those that mediate anti-protein responses. The further role of cytokines, Toll-like receptors, and B cell receptor signaling in mediating these responses, and its implications for the effectiveness of anti-pneumococcal, polysaccharide-based vaccines, is also discussed.  相似文献   

9.
Pectins are dietary fibers with different structural characteristics. Specific pectin structures can influence the gastrointestinal immune barrier by directly interacting with immune cells or by impacting the intestinal microbiota. The impact of pectin strongly depends on the specific structural characteristics of pectin; for example, the degree of methyl-esterification, acetylation and rhamnogalacturonan I or rhamnogalacturonan II neutral side chains. Here, we review the interactions of specific pectin structures with the gastrointestinal immune barrier. The effects of pectin include strengthening the mucus layer, enhancing epithelial integrity, and activating or inhibiting dendritic cell and macrophage responses. The direct interaction of pectins with the gastrointestinal immune barrier may be governed through pattern recognition receptors, such as Toll-like receptors 2 and 4 or Galectin-3. In addition, specific pectins can stimulate the diversity and abundance of beneficial microbial communities. Furthermore, the gastrointestinal immune barrier may be enhanced by short-chain fatty acids. Moreover, pectins can enhance the intestinal immune barrier by favoring the adhesion of commensal bacteria and inhibiting the adhesion of pathogens to epithelial cells. Current data illustrate that pectin may be a powerful dietary fiber to manage and prevent several inflammatory conditions, but additional human studies with pectin molecules with well-defined structures are urgently needed.Subject terms: Mucosal immunology, Translational immunology  相似文献   

10.
Defensins--non-antibiotic use for vaccine development   总被引:1,自引:0,他引:1  
Vaccines should elicit protective and long lasting immune memory, which depends on well choreographed responses between innate and acquired immunity. Defensins are small host defense peptides of innate immunity hitherto reported to have antimicrobial activity, which also orchestrate chemotaxis and activation of effector immune cells, including immature dendritic cells. This review analyzes the biological meaning of the immunomodulatory and immunoenhancing features of defensins and their use for the development of novel vaccines to combat cancer and clinically relevant diseases.  相似文献   

11.
More than 99% of cervical cancers have been associated with human papillomaviruses (HPVs), particularly HPV type 16. The clear association between HPV infection and cervical cancer indicates that HPV serves as an ideal target for development of preventive and therapeutic vaccines. Although the recently licensed preventive HPV vaccine, Gardasil, has been shown to be safe and capable of generating significant protection against specific HPV types, it does not have therapeutic effect against established HPV infections and HPV-associated lesions. Two HPV oncogenic proteins, E6 and E7, are consistently co-expressed in HPV-expressing cervical cancers and are important in the induction and maintenance of cellular transformation. Therefore, immunotherapy targeting E6 and/or E7 proteins may provide an opportunity to prevent and treat HPV-associated cervical malignancies. It has been established that T cell-mediated immunity is one of the most crucial components to defend against HPV infections and HPV-associated lesions. Therefore, effective therapeutic HPV vaccines should generate strong E6/E7-specific T cell-mediated immune responses. DNA vaccines have emerged as an attractive approach for antigen-specific T cell-mediated immunotherapy to combat cancers. Intradermal administration of DNA vaccines via a gene gun represents an efficient way to deliver DNA vaccines into professional antigen-presenting cells in vivo. Professional antigen-presenting cells, such as dendritic cells, are the most effective cells for priming antigen-specific T cells. Using the gene gun delivery system, we tested several DNA vaccines that employ intracellular targeting strategies for enhancing MHC class I and class II presentation of encoded model antigen HPV-16 E7. Furthermore, we have developed a strategy to prolong the life of DCs to enhance DNA vaccine potency. More recently, we have developed a strategy to generate antigen-specific CD4(+) T cell immune responses to further enhance DNA vaccine potency. The impressive pre- clinical data generated from our studies have led to several HPV DNA vaccine clinical trials.  相似文献   

12.
T lymphocytes (T cells) are the central cell type initiating all immune responses. They are able to recognize other cells in the body that have been invaded by foreign living or nonliving matter. In such cells, foreign peptides generated by intracellular breakdown are complexed with molecules of the major histocompatibility complex (MHC) specially designed for peptide binding. Peptide-loaded MHC molecules appear on the surface of these cells and alert the immune system. The molecular complex which T cells use for recognition of peptide-loaded MHC molecules is among the most sophisticated and versatile receptor systems in biology. It consists of specific and nonspecific transmembrane components which assemble to a functional signal transduction unit as the result of ligand binding. Correct assembly leads to activation and relocation of enzymes including membrane-associated, tyrosin-specific protein kinases and phosphatases. Transmembrane signaling in T cells depends on the correct assembly and cooperation among multiple molecular components. This may be related to a multitude of different cellular responses of T cells at different stages of differentiation, all elicited through the T cell receptor complex.  相似文献   

13.
Adjuvants stimulate the immune system to vigorously respond to a vaccine. While current adjuvants such as aluminum salts and oil-in-water emulsions have been used for decades, they do not generate broad and long-lasting responses in many vaccines. Consequently, more potent adjuvants are needed. Here, using computer-aided molecule design and machine learning, we discovered 2 new, broad-spectrum adjuvants that can boost vaccine responses. Our library containing 46 toll-like receptor (TLR)-targeting agonist ligands were assembled on Au nanoparticles. Comprehensive in vitro, ex vivo and in vivo studies showed both leads promoted dendritic cell activation via multiple TLRs and enhanced antigen presentation to T cells. When used together with tumor-specific antigens to immunize mice against B16-OVA melanoma and 4T1-PD1 breast cancer, both adjuvants unleashed strong immune responses that suppressed tumor growth and lung metastases. Our results show computer-aided design and screening can rapidly uncover potent adjuvants for tackling waning immunity in current vaccines.  相似文献   

14.
Mannose-binding proteins on the surface of antigen-presenting cells (APCs) are capable of recognizing and internalizing foreign agents in the early stages of immune response. These receptors offer a potential target for synthetic vaccines, especially vaccines designed to stimulate T cells. We set out to synthesize a series of fluorescein-labelled O-mannosylated peptides using manual solid phase peptide synthesis (SPPS) on pre-loaded Wang resin, in order to test their ability to bind mannose receptors on human APCs in vitro. A flexible and reliable method for the synthesis of fluorescein-labelled O-mannosylated glycopeptides was desired in order to study their lectin-binding properties using flow cell cytometry. Two synthetic strategies were investigated: incorporation of a fluorescein label into the peptide chain via a lysine side chain epsilon-amino group at the final stage of standard Fmoc solid phase peptide synthesis or attachment of the fluorescein label to the N(alpha)-amino group of a lysine with further incorporation of a mannosylated peptide unit through the side chain N(epsilon)-amino group. The latter strategy proved more effective in that it facilitated SPPS by positioning the growing mannosylated peptide chain further removed from the fluorescein label.  相似文献   

15.
Numberous studies of embryogenesis have provided evidence for highly specific cell-surface recognition phenomena. These include both the interactions of neighboring cells and the specific cellular migrations which occur as the developmental program of the embryo progresses. The area-code hypothesis elaborate here is an attempt to provide a framework for understanding cell-recognition phenomena in development. This hypothesis is based on extensive genetic, molecular, and cellular studies of the immune system. These studies suggest that the following events occur during the differentiation of antibody-producing cells. 1) Somatic cell lines of antibody-producing cells undergo a modification of their DNA as they become committed to synthesize a particular type of antibody molecule. This chromosomal modification event is probably a DNA translocation which leads to a somatic rearrangement of certain antibody genes. 2) In each of the specific cell lineages the new arrangement of DNA is inherited by all subsequent generations of cells. 3) The developmental programs which control these genetic alterations may be employed in a programmed and reproducible fashion. This programming of antibody development is suggested because different embryos appear to become committed to the production of identical antibody molecules in the same developmental sequence. 4) Antibody molecules are initially displayed on the cell surface where they serve as highly specifici receptors to trigger the cell to proliferate and differentiate upon interacting with appropriate external molecular signals. 5) Antibody-producing cells display combinations of different molecules on their surfaces which cause each of a very large number of different cells to interact differently with their environment. 6) The genes which code for many of these cell-surface molecules are organized into multigene families. These observations as well as information from other developmental systems have led us to propose the area-code hypothesis. This hypothesis is concerned with the structure, function, and regulation of cell-surface molecules that mediate recognition phenomena during embryogenesis. Area-code molecules are cell-surface molecules which are involved in the specific recognition phenomena during growth and development. These molecules provide cells with distinct cell-surface addresses or phenotypes, and provide the basis for the specificity in cell-cell recognition during cell migrations and cell-cell interactions, as well as serving as receptors for diffusible differentiation signals. The area-code hypothesis has 3 main postulates. i) There is a progressive display of specific combinations of area-code molecules on the surfaces of cells during development. ii) The genetic programs which determine the specific expression of area-code molecules are in part controlled by DNA modifications. These chromosomal modifications are believed to channel cells into specific lineages uith progressively restricted developmental options...  相似文献   

16.
Photodynamic therapy (PDT) is a potentially immunogenic and FDA‐approved antitumor treatment modality that utilizes the spatiotemporal combination of a photosensitizer, light and oftentimes oxygen, to generate therapeutic cytotoxic molecules. Certain photosensitizers under specific conditions, including ones in clinical practice, have been shown to elicit an immune response following photoillumination. When localized within tumor tissue, photogenerated cytotoxic molecules can lead to immunogenic cell death (ICD) of tumor cells, which release damage‐associated molecular patterns and tumor‐specific antigens. Subsequently, the T‐lymphocyte (T cell)–mediated adaptive immune system can become activated. Activated T cells then disseminate into systemic circulation and can eliminate primary and metastatic tumors. In this review, we will detail the multistage cascade of events following PDT of solid tumors that ultimately lead to the activation of an antitumor immune response. More specifically, we connect the fundamentals of photochemically induced ICD with a proposition on potential mechanisms for PDT enhancement of the adaptive antitumor response. We postulate a hypothesis that during the course of the immune stimulation process, PDT also enriches the T‐cell repertoire with tumor‐reactive activated T cells, diversifying their tumor‐specific targets and eliciting a more expansive and rigorous antitumor response. The implications of such a process are likely to impact the outcomes of rational combinations with immune checkpoint blockade, warranting investigations into T‐cell diversity as a previously understudied and potentially transformative paradigm in antitumor photodynamic immunotherapy.  相似文献   

17.
Dendritic cell vaccine (DCV) holds great potential in tumor immunotherapy owing to its potent ability in eliciting tumor-specific immune responses. Aiming at engineering enhanced DCV, we report the first effort to construct a glycopolymer-engineered DC vaccine (G-DCV) via metabolicglycoengineering and copper-free click-chemistry. Model G-DCV was prepared by firstly delivering tumor antigens, ovalbumin (OVA) into dendritic cells (DC) with fluoroalkane-grafted polyethyleneimines, followed by conjugating glycopolymers with a terminal group of dibenzocyclooctyne (DBCO) onto dendritic cells. Compared to unmodified DCV, our G-DCV could induce stronger T cell activation due to the enhanced adhesion between DCs and T cells. Notably, such G-DCV could more effectively inhibit the growth of the mouse B16-OVA (expressing OVA antigen) tumor model after adoptive transfer. Moreover, by combination with an immune checkpoint inhibitor, G-DCV showed further increased anti-tumor effects in treating different tumor models. Thus, our work provides a novel strategy to enhance the therapeutic effectiveness of DC vaccines.  相似文献   

18.
QDs标记免疫调节肽及其与T细胞作用的表征   总被引:1,自引:0,他引:1  
量子点是直径为1~10 nm的球形半导体纳米晶体, 也被称为半导体量子点, 简称QDs. 与有机荧光染料相比, QDs具有激发光谱单一、 荧光谱线窄、 发光效率高、 发光颜色可调、 可进行多色联合标记, 并且光稳定性好等优点, 所以量子点是非常有前途的生物标记物[1,2]. 研究结果表明, 量子点可以与许多生物分子如蛋白质、多肽、核酸及小分子配体等偶联. 现已有许多关于量子点标记生物分子的报道, 如用量子点标记木瓜蛋白酶、 胰蛋白酶、 天花粉蛋白和表皮生长因子等[3-5].用量子点标记生物分子作为荧光探针已成功地应用于多种生物分析, 如DNA杂交监测、 免疫分析和用QDs检测ATP推动的反应等[4,6,7]. 目前, 对量子点标记生物分子的报道多为对大分子蛋白质的标记, 而对小分子肽标记的报道却很少.  相似文献   

19.
Human C-type lectin receptors (CLRs) characteristically bind glycosylated ligands in a Ca(2+)-dependent way via their carbohydrate recognition domain (CRD). Their carbohydrate preference is dependent on the amino acid sequence in the CRD domain and on the ability and flexibility of the CRD domain to accommodate sugar moieties that are located at different distances from each other in the glycoconjugate. Although microbial and vertebrate cells are able to produce similar polysaccharide chains, the density of carbohydrates on microbes is much higher compared to vertebrate cells. Despite this difference, carbohydrates present on both cell types can be recognized by the CLRs. These receptors are predominantly expressed by antigen presenting cells such as dendritic cells. In addition to the Toll-like receptor family, CLRs function as pattern recognition receptors by recognizing glycosylated patterns on pathogens. This usually results in internalization of the pathogen, lysosomal degradation and subsequent loading of pathogen-derived peptides into major histocompatibility complex molecules for antigen presentation. However, several pathogens have developed ways to exploit the CLRs to evade immune eradication by for example escaping from the lysosomal degradation pathway or by inducing anti-inflammatory cytokines. When CLRs bind endogenous glycosylated ligands they mediate several processes like cell-cell adhesion and clearance of aberrant cells like tumor cells or apoptotic cells.  相似文献   

20.
Over the last 40 years, electrically conductive polymers have become well established as important electrode materials. Polyanilines, polythiophenes and polypyrroles have received particular attention due to their ease of synthesis, chemical stability, mechanical robustness and the ability to tailor their properties. Electrochemical synthesis of these materials as films have proved to be a robust and simple way to realise surface layers with controlled thickness, electrical conductivity and ion transport. In the last decade, the biomedical compatibility of electrodeposited polymers has become recognised; in particular, polypyrroles have been studied extensively and can provide an effective route to pharmaceutical drug release. The factors controlling the electrodeposition of this polymer from practical electrolytes are considered in this review including electrolyte composition and operating conditions such as the temperature and electrode potential. Voltammetry and current-time behaviour are seen to be effective techniques for film characterisation during and after their formation. The degree of take-up and the rate of drug release depend greatly on the structure, composition and oxidation state of the polymer film. Specialised aspects are considered, including galvanic cells with a Mg anode, use of catalytic nanomotors or implantable biofuel cells for a self-powered drug delivery system and nanoporous surfaces and nanostructures. Following a survey of polymer and drug types, progress in this field is summarised and aspects requiring further research are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号