首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical method, based on a column coupling capillary ITP and CZE in a hydrodynamically closed separation mode hyphenated with the detection in the modular arrangement, was developed in this work. Analytical possibilities of this approach are demonstrated on the direct and ultrasensitive quantitative determination of quinine (QUI) in diluted real multicomponent ionic matrices (beverages, urine). The detection cell interface, with the rectangular arrangement of the optical channels inside, connected the separation capillary with the LIF detector via optical fibers in the on‐column detection arrangement. ITP enabled the direct large volume (30 μL) injections of the diluted real matrices with an on‐line sample pretreatment (preseparation, preconcentration) so that no external sample preparation (except for the dilution) was necessary for the separation of the analyte in the multicomponent ionic matrices. Due to the ITP sample preconcentration and intrinsic sensitivity of the LIF detection, very low concentration LOD (as low as 77 pg/mL), were reached at the same time. This was ca. two orders lower than the corresponding LOD achieved by the same 2D separation system with UV absorbance detection. Compared to the single column CE‐LIF methods applied for this model analyte and matrix, this method was found to be superior in terms of concentration LOD, with acceptable selectivity and benefits of the on‐line sample preparation. A food control and bioanalytical application clearly illustrates great practical possibilities and routine use of the proposed modular ITP–CZE–LIF technique.  相似文献   

2.
To improve the sensitivity of the UV-detection for the determination of trace amounts of albumin by capillary zone electrophoresis (CZE), five on-line preconcentration techniques, including field-amplified sample stacking (FASS), head-column field-amplified sample stacking (HC-FASS), stacking with a polymer solution, dynamic pH junction and large volume sample stacking (LVSS) with reversed polarity, were compared. Sensitivity enhancement factor and reproducibility were two factors that were used to assess the suitability of each method. To minimize protein adsorption on the capillary wall, capillaries were covalently modified with anionic polymer, poly(sulfopropylmethacrylate) coating. All used methods have good reproducibility. The maximum sensitivity enhancement factor (about 67-fold in terms of peak heights) was achieved with LVSS technique. The concentration limit of detection (LOD) (S/N=3) for the human serum albumin obtained with the optimized LVSS approach was 15 microg/ml with UV-detection. The method was further evaluated for the analysis of urine samples with gel-filtration-based sample-desalting procedure.  相似文献   

3.
The techniques of the on-line combination of capillary isotachophoresis with zone electrophoresis in two coupled capillaries (ITP-CZE) and a single capillary zone electrophoresis (CZE) were used for the sensitive determination of orotic acid (OA) in human urine. The simple CZE system was successfully applied for fast and reliable analyses of urine of healthy adult volunteers (the detection limit 1.7.10(-6) M OA, the total time of analysis 6 min). However, this method failed in analyses of OA in urine of ill children due to more complex matrix of the samples. Here, the ITP preconcentration and preseparation step coupled on-line with CZE proved to serve well with an electrolyte system developed and optimized for this purpose. The maximum selectivity and resolution of OA from other sample constituents in ITP-CZE was achieved by use of an electrolyte system of very low pH 2.15 both for ITP and CZE stage. The sensitivity of detection and simplicity of OA identification were enhanced by use of an external UV scanning detector. High sensitivity of ITP-CZE combination (limit of detection 3.10(-7) M OA), low sample consumption (1 microliter), good reproducibility of migration times (inter-day RSD < 1.86%) and acceptable reproducibility of the determination of OA in urine samples (average RSD = 7.27%) make this technique suitable for routine determination of trace concentration of OA especially in urine of ill children under various pathological conditions and medication.  相似文献   

4.
Chen Y  Zhang L  Cai Z  Chen G 《The Analyst》2011,136(9):1852-1858
In this paper, we developed a simple and effective on-line focusing technique combining dynamic pH junction and sweeping by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection. Dynamic pH junction-sweeping is defined when the sample has a different buffer pH (dynamic pH junction condition) and is devoid of micelles (sweeping condition) relative to the background electrolyte (BGE). This hyphenated focusing mode was applied to the sensitive and selective focusing of four dipeptides: Tyr-Phe, Tyr-Leu, Trp-Gly, and Ala-Gln. Picomolar detectability of these dipeptides by CE-LIF detection was demonstrated through effective focusing of large sample volumes (up to 39% capillary length) using the dual pH junction-sweeping focusing mode. 25 mmol L(-1) sodium dihydrogen phosphate, pH 2.5 was used as the sample matrix, and 100 mmol L(-1) borate, 21 mmol L(-1) sodium dodecylsulfate (SDS), 16 mmol L(-1) Brij35, pH 9.0 as the background solution (BGS). The concentration detection limits (S/N = 3) of the four dipeptides were in the range of 1.0-5.0 pmol L(-1). The developed method has been successfully used for the determination of dipeptides in human serum samples.  相似文献   

5.
An online preconcentration technique by dynamic pH junction was studied to improve the detection limit for anionic arsenic compounds by CE. The main target compound is roxarsone, or 3-nitro-4-hydroxyphenylarsonic acid, which is being used as an animal feed additive. The other inorganic and organoarsenic compounds studied are the possible biotransformation products of roxarsone. The arsenic species were separated by a dynamic pH junction in a fused-silica capillary using 15 mM phosphate buffer (pH 10.6) as the BGE and 15 mM acetic acid as the sample matrix. CE with UV detection was monitored at a wavelength of 192 nm. The influence of buffer pH and concentration on dynamic pH junction were investigated. The arsenic species focusing resulted in LOD improvement by a factor of 100-800. The combined use of C18 and anion exchange SPE and dynamic pH junction to CE analysis of chicken litter and soils helps to increase the detection sensitivity. Recoveries of spiked samples ranged between 70 and 72%.  相似文献   

6.
A new method for the determination of trace glyphosate (GLYP), non-selective pesticide, by CZE with online ITP pre-treatment of drinking waters on a column-coupling (CC) chip has been developed. CC chip was equipped with two injection channels of 0.9 and 9.9 μL volumes, two separation channels of 9.3 μL total volume and a pair of conductivity detectors. A very effective ITP sample clean-up performed in the first channel at low pH (3.2) was introduced for quick CZE resolution and detection of GLYP carried out at higher pH (6.1) in the second channel on the CC chip. The LOD for GLYP was estimated at 2.5 μg/L (15 nmol/L) using a 9.9 |mL volume of the injection channel. ITP-CZE analyses of model and real samples have provided very favorable intra-day (0.1-1.2% RSD) and inter-day (2.9% RSD) repeatabilities of the migration time for GLYP while 0.2-6.9% RSD values were typical for the peak area data. Recoveries of GLYP in spiked drinking water varied in the range of 99-109%. A minimum pre-treatment of drinking water (degassing and dilution) and a short analysis time (ca. 10 min) were distinctive features of ITP-CZE determinations of GLYP on the CC chip with high sample volume loaded, as well.  相似文献   

7.
Yu L  Li SF 《Electrophoresis》2005,26(22):4360-4367
There is a need to develop simple yet effective preconcentration methods to enhance concentration sensitivity for CE analysis of trace level analytes in real samples, particularly when commonly available but less sensitive detection methods, e.g., UV detection, are used. In this report, a hyphenated online preconcentration strategy combining dynamic pH junction with sweeping (i.e., dynamic pH junction-sweeping) was employed for the analysis of four toxic pyrrolizidine alkaloids (PAs) of senkirkine, senecionine, retrorsine, and seneciphylline in Chinese herbal medicine (Kuan donghua). Direct electrokinetically focusing of a large sample volume injection (up to 20% of capillary length) on the capillary was performed using the dynamic pH junction-sweeping method. A sample matrix consisting of 10 mM phosphate with 20% methanol at pH 4.0 and a BGE containing 20 mM borate, 30 mM SDS, and 20% methanol at pH 9.1 were utilized to realize dynamic pH junction-sweeping for PAs. This online preconcentration strategy resulted in sensitivity enhancement factors ranging from 23.8- to 90.0-fold for the four toxic PAs, giving an LOD as low as 30 ppb for the PAs. Critical factors such as sample matrix type, pH, and salt concentration were also examined to achieve higher sensitivity enhancement, shorter analysis time, and better resolution. The results indicate that the proposed dynamic pH junction-sweeping technique is a powerful alternative approach for identification and determination of trace levels of these toxic PAs and other hydrophobic, protonatable compounds in real samples.  相似文献   

8.
9.
We have examined transient isotachophoresis (ITP) conditions, e.g. the nature of the terminating ion, its concentration, and the injection procedure, to improve the limit of detection (LOD) for determination of nitrite and nitrate in seawater by capillary zone electrophoresis (CZE). Artificial seawater containing 3.0 mmol L(-1) cetyltrimethylammonium chloride (CTAC) was used as background electrolyte (BGE). After sample injection 600 mmol L(-1) acetate was separately injected into the capillary as the terminating ion for transient ITP. The LOD for nitrite and nitrate, obtained at a signal-to-noise ratio (S/N) of 3, were 15 and 7.0 microg L(-1) (as nitrogen), respectively. Relative standard deviations (RSD) of peak area for nitrite and nitrate were 7.3 and 0.8%, respectively, and the RSD of peak height were 5.7 and 1.2%, respectively, when the concentrations of nitrite and nitrate were 0.05 and 0.25 mg L(-1). The RSD of migration time for these ions was 0.2%. The proposed method was applied to the determination of nitrite and nitrate in seawater samples. The results for nitrite were nearly in agreement with those obtained by naphthylethylenediamine spectrophotometric analysis (SPA; correlation coefficient 0.9041).  相似文献   

10.
Beckers JL 《Electrophoresis》2000,21(14):2788-2796
A sample stacking procedure to which a specific combination of electrolyte solutions is applied is isotachophoresis (ITP) superimposed on capillary zone electrophoresis (CZE), a so-called ITP/CZE system. In ITP/CZE some components migrate in an ITP fashion on top of a background electrolyte, and the other analytes migrate in a zone electrophoretic manner. For such a system, the leading electrolyte consists of a mixture of an ionic species, L1, of high mobility (the leading ion of the ITP system), an ionic species, L2, of low mobility (the coions of the CZE system), and a buffering counter-ionic species, whereas the terminating solution only contains the ionic species L2 and the buffering counterions. The zones of the components migrating in the ITP/CZE mode are sharp owing to the self-correcting properties of the zones and the concentrations of the L1 ions of the system. Mobility windows can be calculated, indicating which ions can migrate in the ITP/CZE mode. In this article mobility windows are calculated by applying both strong and weak acids as L1 and L2 ions and it appears that mobility windows can be optimized by chosing different ratios of L1 and L2 as well as different pH values. It is possible to construct very narrow mobility windows, and thereby choose which component of a sample solution can be concentrated, and to what concentration, in a very selective way. The big advantage of ITP/CZE compared with applications such as transient ITP and transient stacking is that the stacked sample ionic species migrate in the ITP mode during the whole experiment; furthermore, they do not destack. Experimentally obtained electropherograms validate the calculated mobility windows for the ITP/CZE mode.  相似文献   

11.
The analysis of sub-ppb levels of Fe(II), Co(II), and Ni(II) in heat exchanger fluids of nuclear power plants is needed to monitor corrosion. A method involving preconcentration with electrokinetic supercharging (electrokinetic injection with transient ITP), CZE separation, and in-capillary derivatization with ortho-phenanthroline (o-Phe) for direct UV detection was thus developed. First, a multizone BGE was loaded into the capillary by successive hydrodynamic introduction of zones of (i) o-Phe-containing BGE, (ii) BGE for the zonal separation, and (iii) ammonium-based leading electrolyte. Metal cations were electrokinetically injected and stacked at the capillary inlet behind this last leading zone. Finally, a terminating electrolyte zone was hydrodynamically introduced. When a constant voltage was applied, metal ions kept on concentrating isotachophoretically, then separated in CZE mode, were complexed by migrating through an o-Phe zone, and finally detected by direct absorbance. To detect extremely thin peaks, it was attempted for the first time to focus the derivatization reagent by inducing a second transient ITP, before labeling analytes, already separated in CZE mode. With this arrangement, LODs were about 30 ppt in pure water. In heat exchanger fluid matrices containing 1000 ppm bore and 2 ppm lithium, only Fe(II) cation was detected among the three cations of interest at the 1 ppb level using the present method, and its LOD was about ten times higher, due to the lower loading rate during electrokinetic injection.  相似文献   

12.
Application potentialities of CZE on-line coupled with capillary ITP and DAD to the identification and determination of trace concentration levels (microg/L) of pheniramine (PHM) enantiomers and their metabolites present in complex ionic matrices of biological origin (urine) are shown. An enhanced (enantio)selectivity of the CZE separation system obtained by the addition of carboxyethyl-beta-CD (CE-beta-CD) to the carrier electrolyte provided CZE conditions for a reliable identification of similar/identical DAD spectra of structurally related compounds (PHM enantiomers and their metabolites) in clinical urine samples differing in qualitative and quantitative composition of sample matrix constituents. A high sample loadability (a 30 microL sample injection volume), partial sample clean-up (removing macroconstituents from the sample), and preconcentration of the analytes in ITP stage resulted in the decrease of concentration LOD for PHM enantiomers in urine to 5.2 and 6.8 microg/L (2.2 x 10(-8) and 2.8 x 10(-8) mol/L), without using any sample pretreatment technique. The background correction and smoothing procedure applied to the raw DAD spectra provided analytically relevant DAD spectra of PHM enantiomers and their metabolites also when they were present in urine sample (30 microL injection volumes of ten-times diluted urine sample) at a 9 x 10(-) (8) mol/L concentration. DAD spectra of PHM enantiomers present in urine samples matched their reference spectra with reasonable certainties. DAD spectra of PHM metabolites were compared with the reference spectra of PHM enantiomers and a good match was found which indicates the similarities in the structures of enantiomers and their metabolites detected in the urine samples. This fact allows performing the quantitative analyses of PHM metabolites in the urine samples by applying the calibration parameters of PHM enantiomers also for PHM metabolites and the results show the possibilities of using the ITP-CZE-DAD combination for the direct analysis of PHM enantiomers and/or their metabolites in urine without any sample pretreatment. ITP-CZE-DAD method with oppositely charged selector is suggested to use in clinical research as it provides favorable performance parameters including sensitivity, linearity, precision, recovery, and robustness with minimal demands on sample preparation.  相似文献   

13.
The principle of an on-line preconcentration method for capillary zone electrophoresis (CZE) named electrokinetic supercharging (EKS), is described and based on computer simulation the preconcentration behavior of the method is discussed. EKS is an electrokinetic injection method with transient isotachophoretic process, is a powerful preconcentration technique for the analysis of dilute samples. After filling the separation capillary with supporting electrolyte, an appropriate amount of a leading electrolyte was filled and the electrokinetic injection was started. After a while, terminating electrolyte was filled subsequently and migration current was applied. This procedure enabled the introduction of a large amount of sample components from a dilute sample without deteriorating separation. Computer simulation of the electrokinetic injection revealed that EKS was effective for the preconcentration of analytes with wide mobility ranges by proper choice of transient isotachophoresis (ITP) system and electroosmotic flow (EOF) should be suppressed to increase injectable amount of analytes under constant voltage mode. A test mixture of rare-earth chlorides was used to demonstrate the uses of EKS-CZE. When a 100 microL sample was used, the low limit of detectable concentration was 0.3 microg/L (1.8 nM for Er), which was comparable or even better than that of ion chromatography and inductively coupled plasma-atomic emission spectrometry (ICP-AES).  相似文献   

14.
A new multidimensional analytical approach for the ultra‐trace determination of target chiral compounds in unpretreated complex real samples was developed in this work. The proposed analytical system provided high orthogonality due to on‐line combination of three different methods (separation mechanisms), i.e. (1) isotachophoresis (ITP), (2) chiral capillary zone electrophoresis (chiral CZE), and (3) triple quadrupole mass spectrometry (QqQ MS). The ITP step, performed in a large bore capillary (800 μm), was utilized for the effective sample pretreatment (preconcentration and matrix clean‐up) in a large injection volume (1–10 μL) enabling to obtain as low as ca. 80 pg/mL limits of detection for the target enantiomers in urine matrices. In the chiral CZE step, the different chiral selectors (neutral, ionizable, and permanently charged cyclodextrins) and buffer systems were tested in terms of enantioselectivity and influence on the MS detection response. The performance parameters of the optimized ITP – chiral CZE‐QqQ MS method were evaluated according to the FDA guidance for bioanalytical method validation. Successful validation and application (enantioselective monitoring of renally eliminated pheniramine and its metabolite in human urine) highlighted great potential of this chiral approach in advanced enantioselective biomedical applications.  相似文献   

15.
The determination of ethyl glucuronide (EtG), a marker of recent alcohol consumption, in human serum by hyphenation of capillary ITP (CITP) and CZE is reported. For CITP step, 1 x 10(-2) M hydrochloric acid adjusted with epsilon-aminocaproic acid (EACA) to pH 4.4 was used as the leading electrolyte, and 1 x 10(-2) M nicotinic acid with EACA, pH 4.4, was used as the terminating electrolyte (TE). All electrolytes contained 0.2% hydroxypropylcellulose to suppress electroosmosis. In CITP, EtG was separated from fast serum macrocomponents chloride, phosphate, lactate, and acetate. Zones of microcomponents including EtG that migrated between acetate and nicotinate were forwarded to the second capillary filled with a BGE identical with the TE. Conductivity detection was used in the CITP step. Sensitive detection in the CZE step was performed using indirect spectrophotometric detection at 254 nm. The assay is based on a 1:5 dilution of serum with deionized water and has a concentration LOD for EtG in diluted sample of 9.8 x 10(-9) M. The method was used for the determination of EtG in sera of volunteers consuming alcohol.  相似文献   

16.
Online sample concentration of acidic drugs by transient isotachophoresis (t-ITP) with the injection of a base is described in capillary zone electrophoresis (CZE). A positively coated capillary was conditioned with background electrolyte (ammonium acetate at pH 6). A long plug of sample solution (S) prepared in ammonium acetate was then hydrodynamically injected followed by the base (tetrapropylammonium hydroxide). A negative voltage was applied and caused the hydroxide ions from the base to penetrate the S zone and created a pH junction that swept through the S zone. The analytes stack at the junction where the mechanism of focusing was transient ITP with the acetate and hydroxide ions as leading and terminating ions, respectively. The concentrated analytes separated in co-EOF CZE once the hydroxide was exhausted. The base stacking strategy was tested using hypolipidemic, nonsteroidal anti-inflammatory, and diuretic drugs, and afforded 19-37 improvements in peak height.  相似文献   

17.
To improve detection sensitivity of cationic analytes, a dynamic pH junction technique was examined. Dynamic pH junction is an on-line focusing method in capillary electrophoresis (CE) based on the difference in the analyte's mobility between the background electrolyte (BGE) and sample matrix. The effects of pH values and concentrations of the BGE and the sample matrix on dynamic pH junction were examined. Optimization of analyte focusing resulted in enhanced detection responses of about 100-160-fold in terms of peak heights for some anilines in comparison to conventional injections. In particular, the concentration limits of detection (LOD) (S/N = 3) for the test anilines obtained with dynamic pH junction were from 1.9 to 3.7 ppb with UV detection without any pretreatment procedure.  相似文献   

18.
A rapid method for the simultaneous determination of several non-steroidal anti-inflammatory drugs (NSAIDs) in human plasma and urine was developed using transient pseudo-isotachophoresis (ITP) in capillary zone electrophoresis (CZE). The influence of different parameters on resolution and preconcentration efficiency, such as background electrolyte (BGE) composition, sample injection, sample matrix composition, and pH, were studied to optimize the transient pseudo-ITP performance. Optimized conditions were a BGE consisting of 100 mM Na2B4O7 in 10% aqueous MeOH solution and hydrodynamic injection of the sample at 50 mbar for 90 s. The sample was prepared in a solution mixture of 1% NaCl/ethanol (30:70 v/v) at pH 10. Our results show that this simple strategy offers improved sensitivity compared to conventional CZE analysis, reaching a 45-fold preconcentration factor. The detection limits (LODs) were as low as 0.07 mg/L for standard samples with good repeatability (values of relative standard deviation, %RSD < 11%). The method was applied to the analysis of NSAIDs in biological samples. Validation for human plasma and urine samples demonstrated good linearity, low detection limits, and satisfactory repeatability values.  相似文献   

19.
The low sensitivity of simple CZE for detecting metal ions is a long-standing problem even when an LIF detection system is employed. We have successfully achieved an ultrasensitive CE-LIF using a simple CZE mode (typical detection limit: 10(-11)-10(-10) mol/dm(3)). Both the design of a newly synthesized ligand and the combination of a precapillary derivatizing technique with an on-capillary ternary complexing technique have enabled us to achieve this extremely low LOD and high resolution of large metal complexes. The direct fluorescent detection of the paramagnetic metal ions was achieved for the first time despite their intrinsic fluorescent quenching nature. The fluorescent ligand (L) consists of a polyaminocarboxylate chelating moiety, a strongly emissive fluorescein moiety and a spacer connecting the two portions. The migration behavior of various metal-L complexes was investigated. The resolution among the complexes was improved by the introduction of a ternary complex equilibrium of the kinetically stable mother complexes with OH(-) ion. The analytical potential of our simple system was examined, and it was proved that the system was one of the most sensitive methods without the need for any preconcentration process.  相似文献   

20.
The combination of capillary isotachophoresis (ITP) and capillary zone electrophoresis (CZE) in the column coupling configuration was optimized in a mode where the electrolyte for the CZE step is different from the leading and terminating ITP electrolytes. Two colored markers, picric acid and 1-nitroso-2-naphthol, were used for exact timing of the transfer of isotachophoretically stacked analyte zones into the CZE column and for the control of the residual amount of the leading and terminating ITP electrolytes entering the CZE capillary together with the analytes, thus controlling the duration of transient ITP migration in the CZE capillary and ensuring good separation of the analytes and reproducibility of the migration times (relative standard deviations 1%). ITP-CZE was applied to the simultaneous assay of several cinnamic acid derivatives and flavonoids in methanolic extracts of Sambucus flowers and Crataegus leaves and flowers. The preconcentrating and cleansing effect of the ITP step allowed injection of relatively large sample volumes (30 microL). The limits of detection were approximately 20-50 ng x mL(-1) and 100 ng x mL(-1) for the acids and flavonoids, respectively ( thick similar 200-times lower compared to conventional CE) with spectrophotometric detection at 254 nm. The ITP-CZE exhibited satisfactory linearity and precision when using CZE buffer of pseudo "pH" 9.0; 1-nitroso-2-naphthol was employed as the internal standard. The separation took approximately 35 min. The ITP-CZE results for rutin, hyperoside, and vitexin-2-O"-rhamnoside were in good accordance with those obtained previously by high-performance liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号