首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article describes the first single-vesicle study of proton permeability across the lipid membrane of small (approximately 100 nm) uni- and multilamellar vesicles, which were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). To follow proton permeation into the internal volume of each vesicle, we encapsulated carboxyfluorescein, a pH-sensitive dye whose fluorescence was quenched in the presence of excess protons. A microfluidic platform was used for easy exchange of high- and low-pH solutions, and fluorescence quenching of single vesicles was detected with single-molecule total internal reflection fluorescence (TIRF) microscopy. Upon solution exchange and acidification of the extravesicular solution (from pH 9 to 3.5), we observed for each vesicle a biphasic decay in fluorescence. Through single-vesicle analysis, we found that rate constants for the first decay followed a Poisson distribution, whereas rate constants for the second decay followed a normal distribution. We propose that proton permeation into each vesicle first arose from formation of transient pores and then transitioned into the second decay phase, which occurred by the solubility-diffusion mechanism. Furthermore, for the bulk population of vesicles, the decay rate constant and vesicle intensity (dependent on size) correlated to give an average permeability coefficient; however, for individual vesicles, we found little correlation, which suggested that proton permeability among single vesicles was heterogeneous in our experiments.  相似文献   

2.
The effect of glycerol on the permeability of vesicle membranes of a siloxane surfactant, the block copolymer polyethyleneoxide-b-polydimethylsiloxane-polyethyleneoxide, (EO)15-(DMS)15-(EO)15, was studied with freeze-fracture transmission electron microscopy (FF-TEM) and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. The FF-TEM results show that, in pure water, the surfactant can form small vesicles with diameters of less than 25 nm, as well as a few multilamellar vesicles with diameters larger than 250 nm. Gradual substitution of water with glycerol to a glycerol content of 40% leads to significant structural transformations: small vesicles are gradually swollen, and large multilamellar vesicles disappear. A glycerol content of 60% results in the complete disintegration of the vesicles into membrane fragments. PFG-NMR measurements indicate that the vesicle membrane does not represent an effective barrier for water molecules on the NMR time scale; hence, the average residence time of water in the encapsulated state is below tau b = 2 ms. In contrast, the average residence time of glycerol molecules in the encapsulated state can be as large as tau b = 910 ms. The permeability of the vesicle membrane increases with increasing glycerol concentration in the solvent: At a concentration of 40%, the residence time tau b is lowered to approximately 290 ms. After vesicle destruction at higher glycerol concentrations, a small glycerol fraction is still bound by membrane fragments that are formed after the disintegration of the vesicles.  相似文献   

3.
The authors study the response of a multicomponent budded vesicle to an imposed shear flow using dissipative particle dynamics. Under certain circumstances, phase separation in the vesicle membrane leads to the formation of a minority domain which deforms into a nearly spherical bud in order to reduce its interfacial energy. The authors show that an imposed shear force has a varying effect on the vesicle, tending either to separate the bud from the vesicle or to stretch the bud open, depending on the vesicle orientation. The authors examine the interplay of membrane bending rigidity, line tension, and shear in determining the behavior of the vesicle. With the appropriate design, vesicles can be made to release buds in a controlled manner in response to shear. The authors outline a regime in which bud release is favorable.  相似文献   

4.
We present a simple method to characterize vesicles and determine, at the same time, the membrane permeability to specific molecules. The method is based on encapsulating highly hydrophilic 3,3',3' '-phosphinidynetris-benzenesulfonic acid (PH) into vesicles and subsequently monitoring its reaction with 5,5'-dithiobis-2-nitrobenzoic acid (DTNB). We tested the method by measuring the membrane permeability of vesicles formed from a series of poly(ethylene oxide)-co-polybutylene oxide (EB) copolymers and egg yolk phosphatidylcholine. We found that the experimental data are in good agreement with calculations based on Fick's first law. We therefore quantified the DTNB permeability across vesicle membranes, finding that polymeric EB membranes have a more selective permeability toward polar molecules compared to phospholipids membranes.  相似文献   

5.
Micropipet aspiration of phase-separated lipid bilayer vesicles can elucidate physicochemical aspects of membrane fluid phase coexistence. Recently, we investigated the composition dependence of line tension at the boundary between liquid-ordered and liquid-disordered phases of giant unilamellar vesicles obtained from ternary lipid mixtures using this approach. Here we examine mechanical equilibria and stability of dumbbell-shaped vesicles deformed by line tension. We present a relationship between the pipet aspiration pressure and the aspiration length in vesicles with two coexisting phases. Using a strikingly simple mechanical model for the free energy of the vesicle, we predict a relation that is in almost quantitative agreement with experiment. The model considers the vesicle free energy to be proportional to line tension and assumes that the vesicle volume, domain area fraction, and total area are conserved during aspiration. We also examine a mechanical instability encountered when releasing a vesicle from the pipet. We find that this releasing instability is observed within the framework of our model that predicts a change of the compressibility of a pipet-aspirated membrane cylinder from positive (i.e., stable) to negative (unstable) values, at the experimental instability. The model furthermore includes an aspiration instability that has also previously been experimentally described. Our method of studying micropipet-induced shape transitions in giant vesicles with fluid domains could be useful for investigating vesicle shape transitions modulated by bending stiffness and line tension.  相似文献   

6.
The aim of the present work was to design functionalized lipidic membranes that can selectively interact with lanthanide ions at the interface and to exploit the interaction between membranes induced by this molecular-recognition process with a view to building up self-assembled vesicles or controlling the permeability of the membrane to lanthanide ions. Amphiphilic molecules bearing a beta-diketone unit as head group were synthesized and incorporated into phospholipidic vesicles. Binding of Eu(III) ions to the amphiphilic ligand can lead to formation of a complex involving ligands of the same vesicle membrane (intravesicular complex) or of two different vesicles (intervesicular complex). The effect of Eu(III) ions on vesicle behavior was studied by complementary techniques such as fluorimetry, light scattering, and electron microscopy. The formation of an intravesicular luminescent Eu/beta-diketone ligand (1/2) complex was demonstrated. The linear increase in the binding constant with increasing concentration of ligands in the membrane revealed a cooperative effect of the ligands distributed in the vesicle membrane. The luminescence of this complex can be exploited to monitor the kinetics of complexation at the interface of the vesicles, as well as ion transport across the membrane. By encapsulation of 2,6-dipicolinic acid (DPA) as a competing ligand which forms a luminescent Eu/DPA complex, the kinetics of ion transport across the membrane could be followed. These functional vesicles were shown to be an efficient system for the selective transport of Eu(III) ions across a membrane with assistance by beta-diketone ligands.  相似文献   

7.
We describe a simple approach to the controlled removal of molecules from the membrane of large unilamellar vesicles made of fatty acids. Such vesicles shrink dramatically upon mixing with micelles composed of a mixture of fatty acid and a phospholipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)), as fatty acid molecules leave the vesicle membrane and accumulate within the mixed micelles. Vesicle shrinkage was confirmed by dynamic light scattering, fluorescence recovery after photobleaching of labeled vesicles, and fluorescence resonance energy transfer between lipid dyes incorporated into the vesicle membrane. Most of the encapsulated impermeable solute is retained during shrinkage, becoming concentrated by a factor of at least 50-fold in the final small vesicles. This unprecedented combination of vesicle shrinkage with retention of contents allows for the preparation of small vesicles containing high solute concentrations, and may find applications in liposomal drug delivery.  相似文献   

8.
A new type of shape-persistent, pH-responsive vesicle was prepared by the self-assembly of a novel poly(ethylene oxide)-block-poly[2-(diethylamino)ethyl methacrylate-stat-3-(trimethoxysilyl)propyl methacrylate], PEO-b-P(DEA-stat-TMSPMA), copolymer. Vesicles were formed spontaneously in aqueous THF solution, with the hydrophilic PEO chains forming the corona and the pH-sensitive P(DEA-stat-TMSPMA) blocks being located in the membrane walls. Hydrolytic cross-linking within the hydrophobic membrane walls fixed the vesicle morphology. The resulting colloidally stable vesicles were characterized by 1H NMR, transmission electron microscopy (TEM), dynamic laser light scattering (DLS), and stopped-flow fluorescence experiments. The latter technique indicated that the permeability of the vesicle walls was sensitive to the pH of the aqueous solution, as expected. Gold-decorated vesicles were obtained by in situ reduction of AuCl4- anions to produce gold nanoparticles within the vesicle walls. (Yellow, hydrophilic PEO; green, pH-responsive DEA residues; blue, hydrolytically self-cross-linkable TMSPMA residues.)  相似文献   

9.
章林溪 《高分子科学》2016,34(5):623-636
A nonequilibrium molecular dynamics (NEMD) method is employed to study the dynamics of two identical vesicles with attractive interactions immersed in shear flow. The dynamics behaviors of attractive vesicles depend on the attractive interactions and the shear rates simultaneously. There are four motion types for attractive vesicles in shear flow: a coupled-tumbling (CTB) motion, a coupled-trembling (CTR) motion, a collision/rotation mixture (CRM) motion and a separated-tank-treading (STT) motion, which are determined by the competition between the shear flow and the attractive interactions. Furthermore, the dynamics behavior of an individual vesicle shows three main motion types such as tumbling, trembling and tank-treading motions, and relies mainly on the shear rates. Meanwhile, comparisons with rigid vesicles for the dynamics behaviors are made, and the collision/rotation mixture (M) motion isn’t observed for rigid vesicles.  相似文献   

10.
A recently described technique [Estes and Mayer, Biochim. Biophys. Acta 1712 (2005) 152-160] for the preparation of giant unilamellar vesicles (GUVs) in solutions with high ionic strength is examined. By observing a series of osmotic swellings followed by vesicle bursts upon a micropipette transfer of a single POPC GUV from a sucrose solution into an iso-osmolar glycerol solution, a value for the permeability of POPC membrane for glycerol, P=(2.09+/-0.82) x 10(-8)m/s, has been obtained. Based on this result, an alternative mechanism is proposed for the observed exchange of vesicle interior. With modifications, the method of Estes and Mayer is then applied to preparation of flaccid GUVs.  相似文献   

11.
The carbonyl hemoglobin (CO-Hb), which was used to prevent denaturation (metHb) during the preparation of samples, was encapsulated into lipid vesicles constituted from unsaturated phospholipid, cholesterol and unsaturated fatty acid. Unsaturated components were polymerized by γ-irradiation to enhance the stability of bilayer membrane. An aqueous dispersion of resulting Hb vesicles was freeze-dried in the presence of saccharides (50–200 mM) to obtain a dehydrated powder of Hb vesicles. Change in the vesicle size, the leakage of encapsulated Hb and the oxidation of Hb to metHb were not observed. Therefore, the long-term storage of Hb vesicles can be realized as a dry powder.  相似文献   

12.
Large unilamellar vesicles with a diameter of 100 nm were prepared from the zwitterionic phospholipid POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) at pH 8.0. After addition to these vesicles of the enzyme phospholipase D (PLD) from Streptomyces sp. AA586 at 40 degrees C, the terminal phosphate ester bond of POPC was hydrolyzed, yielding the negatively charged POPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid) and the positively charged choline. While the reaction yield in the presence of 1 mM Ca2+ reached 100%, the yield was only approximately 68% in the absence of Ca2+. Furthermore, in the absence of Ca2+, the size of the vesicles did not change significantly with time upon PLD addition, as judged from turbidity, dynamic light scattering, and electron microscopy measurements. In the presence of 1 mM Ca2+, however, PLD addition resulted in vesicle aggregation, fusion, and precipitation, originating from the interaction of Ca2+ ions with the negatively charged phospholipids formed in the membranes. Vesicle fusion was monitored by using a novel fusion assay system involving vesicles containing entrapped trypsin and vesicles containing entrapped chymotrypsinogen A. After vesicle fusion, chymotrypsinogen A transformed into a-chymotrypsin, catalyzed by trypsin inside the fused vesicles. The alpha-chymotrypsin formed could be detected with benzoyl-L-Tyr-p-nitroanilide as a membrane permeable chymotrypsin substrate. The observed vesicle precipitation occurring after vesicle fusion in the presence of 1 mM Ca2+ was correlated with an increase of the main phase transition temperature, Tm, of POPA to values above 40 degrees C.  相似文献   

13.
Vesicle response to osmotic shock provides insight into membrane permeability, a highly relevant value for applications ranging from nanoreactor experimentation to drug delivery. The osmotic shock approach has been employed extensively to elucidate the properties of phospholipid vesicles (liposomes) and of varieties of polymer vesicles (polymersomes). This study seeks to compare the membrane response for two varieties of polymersomes, a comb-type siloxane surfactant, poly(dimethylsiloxane)-g-poly(ethylene oxide) (PDMS-g-PEO), and a diblock copolymer, polybutadiene-b-poly(ethylene oxide) (PBut-b-PEO). Despite similar molecular weights and the same hydrophilic block (PEO), the two copolymers possess different hydrophobic blocks (PBut and PDMS) and corresponding glass transition temperatures (-31 and -123 °C, respectively). Dramatic variations in membrane response are observed during exposure to osmotic pressure differences, and values for polymer membrane permeability to water are extracted. We propose an explanation for the observed phenomena based on the respective properties of the PBut-b-PEO and PDMS-g-PEO membranes in terms of cohesion, thickness, and fluidity.  相似文献   

14.
Mixtures of the phospholipids L-alpha-dimyristoylphosphatidic acid (DMPA) and L-alpha-dipalmitoylphosphatidylcholine (DPPC) have been successfully adsorbed onto the charged surface of multilayer polyelectrolyte capsules to form a novel vesicle. Leaving such vesicles in phospholipase A(2) solution, we observed the hydrolysis reaction on the surface of the lipid/polymer vesicles and a permeability change before and after the reaction by confocal-laser scanning microscopy (CLSM). A capsule with adjustable permeability was constructed. This method may provide new features for drug-release vesicles.  相似文献   

15.
Targeted vesicle fusion is a promising approach to selectively control interactions between vesicle compartments and would enable the initiation of biological reactions in complex aqueous environments. Here, we explore how two features of vesicle membranes, DNA tethers and phase‐segregated membranes, promote fusion between specific vesicle populations. Membrane phase‐segregation provides an energetic driver for membrane fusion that increases the efficiency of DNA‐mediated fusion events. The orthogonality provided by DNA tethers allows us to direct fusion and delivery of DNA cargo to specific vesicle populations. Vesicle fusion between DNA‐tethered vesicles can be used to initiate in vitro protein expression to produce model soluble and membrane proteins. Engineering orthogonal fusion events between DNA‐tethered vesicles provides a new strategy to control the spatiotemporal dynamics of cell‐free reactions, expanding opportunities to engineer artificial cellular systems.  相似文献   

16.
The process of vesicle solubilization and size growth by detergents, especially by octylglucoside, was examined in detail in order to elucidate the phenomena observed in the vesicle-to-micelle transition and to clarify the size-determining factor of vesicles prepared by removing detergent from phospholipid–detergent mixed micelles. In the vesicle solubilization process, when the detergent concentration in the vesicle membrane reached a critical value, the collapse of large unilamellar vesicles (LUV) into small unilamellar vesicles (SUV) was observed. This newly appeared SUV were named SUV*. The SUV* could be produced by adding an appropriate amount of detergent to the SUV prepared by an ultrasonication method so as to increase the concentration to a little over the critical value, such as, in the case of adding octylglucoside, a molar ratio of 1.0–1.1 to phospholipid in the membrane phase. The SUV* containing octylglucoside were fusible and grow time-dependently, but those containing sodium cholate were not fusible. On the basis of the SUV* data, the following problems were solved: the variety of the size of the vesicles prepared by detergent removal from mixed micelles composed of a phospholipid and different detergents, or by different removal methods; the complex appearance of turbidity or vesicle size observed in vesicle destruction and formation; the conflict between LUV and SUV in the partition behavior of detergent and the size change with addition of detergent.  相似文献   

17.
Vesicles are spherical bilayers that offer a hydrophilic reservoir, suitable for the incorporation of water-soluble molecules, as well as a hydrophobic wall that protects the loaded molecules from the external solution. The permeability of a vesicle wall made from polystyrene can be enhanced by adding a plasticizer such as dioxane. Tuning the wall permeability allows loading and release of molecules from vesicles to be controlled. In this study, vesicles are prepared from polystyrene(310)-b-poly(acrylic acid)(36) and used as model carriers for doxorubicin (DXR), a weak amine and a widely used anticancer drug. To increase the wall permeability, different amounts of dioxane are added to the vesicle solution. A pH gradient is created across the vesicle wall (inside acidic) and used as an active loading method to concentrate the drug inside the vesicles. The results show that a pH gradient of ca. 3.8 units can enhance the loading level up to 10-fold relative to loading in the absence of the gradient. After loading, the release of DXR from vesicles is followed as a function of the wall permeability. The diffusion coefficient of doxorubicin through polystyrene (D) is evaluated from the initial slope of the release curves; the value of D ranges from 8 x 10(-17) to 6 x 10(-16) cm(2)/s, depending on the degree of plasticization of the vesicle wall.  相似文献   

18.
The interaction of pore-forming streptolysin O (SLO) with biomimetic lipid membranes has been studied by electrochemical methods. Phosphatidylcholine lipid vesicles were deposited onto gold electrodes modified with supporting layers of hexyl thioctate (HT) or thioctic acid tri(ethylene glycol) ester (TA-TEGE), and integrity and permeability of the resulting membranes were characterized by cyclic voltammetry and impedance spectroscopy. Both positively and negatively charged electrochemical probes, potassium ferrocyanide, hexaammineruthenium(III) chloride, and ferrocene carboxylic acid (FCA), were employed to evaluate their suitability to probe the membrane permeability properties, with FCA exhibiting ideal behavior and thus employed throughout the work. Fusion of vesicles incubated with SLO on the electrodes yielded membranes that showed a distinctive response pattern for FCA as a function of SLO concentration. A direct dependence of both the currents and peak separation of FCA in the cyclic voltammograms was observed over a concentration range of 0-10 hemolytic units (HU)/microL of the toxin. The interaction of SLO with preformed supported lipid membranes was also investigated, and much lower response was observed, suggesting a different extent of membrane-toxin interactions on such an interface. Nonionic surfactant Triton was found to disrupt the vesicle structure but could not completely remove a preformed membrane to fully restore the electrode response. The information reported here offers some unique insight into toxin-surface interactions on a hybrid membrane, facilitating the development of electrochemically based sensing platforms for detecting trace amounts of bacterial toxins via the perforation process.  相似文献   

19.
The permeability of block copolymer vesicles is studied using pulsed field gradient nuclear magnetic resonance spectroscopy together with a numerical data analysis procedure. Polyethylene oxide molecules of various molecular masses are used to sample the permeability of the vesicle membrane by observing the trans-membrane exchange process under equilibrium conditions. For shorter polyethylene oxide chains, the analysis yields a nearly linear dependence of the logarithmic trans-membrane exchange rate on the hydrodynamic radius of the sample molecules.  相似文献   

20.
Controlled design of giant unilamellar vesicles under defined conditions has vast applications in the field of membrane and synthetic biology. Here, we bio-engineer bacterial-membrane mimicking models of controlled size under defined salt conditions over a range of pH. A complex bacterial lipid extract is used for construction of physiologically relevant Gram-negative membrane mimicking vesicles whereas a ternary mixture of charged lipids (DOPG, cardiolipin and lysyl-PG) is used for building Gram-positive bacterial-membrane vesicles. Furthermore, we construct stable multi-compartment biomimicking vesicles using the gel-assisted swelling method. Importantly, we validate the bio-application of the bacterial vesicle models by quantifying diffusion of chemically synthetic amphoteric antibiotics. The transport rate is pH-responsive and depends on the lipid composition, based on which a permeation model is proposed. The permeability properties of antimicrobial peptides reveal pH dependent pore-forming activity in the model vesicles. Finally, we demonstrate the functionality of the vesicles by quantifying the uptake of membrane-impermeable molecules facilitated by embedded pore-forming proteins. We suggest that the bacterial vesicle models developed here can be used to understand fundamental biological processes like the peptide assembly mechanism or bacterial cell division and will have a multitude of applications in the bottom-up assembly of a protocell.

Giant vesicle functional models mimicking a bacterial membrane under physiological conditions are constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号