首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have unraveled the effects of an amino substituent in the ortho position on the excited-state dynamics of 4-nitropyridine N-oxide by studying the picosecond fluorescence kinetics and femtosecond transient absorption of a newly synthesized compound, 2-butylamino-6-methyl-4-nitropyridine N-oxide, and by quantum chemical calculations. Similar to the parent compound, the S(1) state of the target molecule has significant charge-transfer character and shows a large (approximately 8000 cm(-1)) static Stokes shift in acetonitrile. Analysis of the experimental and the theoretical results leads, however, to a new scenario in which this intramolecular charge transfer triggers in polar, aprotic solvents an ultrafast (around 100 fs) intramolecular proton transfer between the amino and the N-O group. The electronically excited N-OH tautomer is subsequently subject to solvent relaxation and decays with a lifetime of approximately 150 ps to the ground state.  相似文献   

2.
The excited-state dynamics of two polyfluorene copolymers, one fully conjugated containing phenylene vinylene units alternated with 9,9'-dihexylfluorenyl groups and the other segmented by -(CH2)8- spacer, were studied in dilute solution of different solvents using a picosecond single-photon timing technique. The excited-state dynamics of the segmented copolymer follows the F?rster resonant energy-transfer model which describes intrachain energy-transfer kinetics among random oriented chromophores. Energy transfer is confirmed by analysis of fluorescence anisotropy relaxation with the measurement of a short decay component of about 60 ps. The fluorescence decay surface of the fully conjugated copolymer is biexponential with decay times of about 470 and 900 ps, ascribed to deactivation of chain moieties containing trans and cis isomers already in a photostationary condition. Thus, energy transfer is very fast due to the conjugated nature and rigid-rod-like structure of this copolymer chain.  相似文献   

3.
The excited-state properties of the transition metal complexes tris(2,2'-bipyridine) ruthenium(II) and tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) are examined using picosecond time-resolved luminescence spectroscopy. For both complexes, direct observation of a short-lived high-energy emission with a lifetime of less than 4 ps is reported. Upon deuteriation of the complexes the lifetime of the high-energy emission shows a marked increase with a biexponential decay (20 and approximately 300 ps components). Examination by time-resolved excited-state resonance Raman shows that for the perprotio complexes features attributable to the 3MLCT excited state are formed within 4 ps, while for the perdeuterio a rise time of approximately 20 ps is observed in the 3MLCT features. The results indicate that the emission in both cases may be 1MLCT in origin and are discussed with respect to heterogeneous electron transfer.  相似文献   

4.
Ultrafast excited-state relaxation dynamics of a nonlinear optical (NLO) dye, (S)-(-)-1-(4-nitrophenyl)-2-pyrrolidinemethanol (NPP), was carried out under the regime of femtosecond fluorescence up-conversion measurements in augmentation with quantum chemical calculations. The primary concern was to trace the relaxation pathways which guide the depletion of the first singlet excited state upon photoexcitation, in such a way that it is virtually nonfluorescent. Ground- and excited-state (singlet and triplet) potential energy surfaces were calculated as a function of the -NO(2) torsional coordinate, which revealed the perpendicular orientation of -NO(2) in the excited state relative to the planar ground-state conformation. The fluorescence transients in the femtosecond regime show biexponential decay behavior. The first time component of a few hundred femtoseconds was ascribed to the ultrafast twisted intramolecular charge transfer (TICT). The occurrence of charge transfer (CT) is substantiated by the large dipole moment change during excitation. The construction of intensity- and area-normalized time-resolved emission spectra (TRES and TRANES) of NPP in acetonitrile exhibited a two-state emission on behalf of decay of the locally excited (LE) state and rise of the CT state with a Stokes shift of 2000 cm(-1) over a time scale of 1 ps. The second time component of a few picoseconds is attributed to the intersystem crossing (isc). In highly polar solvents both the processes occur on a much faster time scale compared to that in nonpolar solvents, credited to the differential stability of energy states in different polarity solvents. The shape of frontier molecular orbitals in the excited state dictates the shift of electron density from the phenyl ring to the -NO(2) group and is attributed to the charge-transfer process taking place in the molecule. The viscosity dependence of relaxation dynamics augments the proposition of considering the -NO(2) group torsional motion as the main excited-state relaxation coordinate.  相似文献   

5.
Abstract— At 77 K the fluorescence from spinach chloroplasts excited using picosecond mode-locked laser pulses at 620 nm is made up of 5 separate kinetic components. Three of these are predominant at short wavelengths. between 650 and 690 nm, and they appear to correspond to the 3 decay phases seen at room temperature. The 2 new components. a 100 ps rise and a 3000 ps decay, characterize the longer (730–770 nm) wavelength fluorescence. The temperature dependence of the kinetic components of the long wavelength fluorescence shows that the 3000 ps decay accounts for essentially all of the large increase in fluorescence yield observed at low temperature. Furthermore, it appears that this increase does not result entirely from an increase in the fluorescence lifetime, as has been proposed. The dependences of these 2 new components (the 100 ps rise and 3000 ps decay) on emission wavelength and temperature are similar enough to suggest they have a common origin, presumably the chlorophyll pigment component C705. The amplitudes (yield/lifetime) of these 2 phases are approximately equal, and they are opposite in sign. Thus. we see evidence of time-resolved excitation transfer from those pigment molecules that absorb the 620 nm radiation to those that give rise to the long wavelength fluorescence at low temperature.  相似文献   

6.
The excited-state processes of protochlorophyllide a, the precursor of chlorophyll a in chlorophyll biosynthesis, are studied using picosecond time-resolved fluorescence spectroscopy. Following excitation into the Soret band, two distinct fluorescence components, with emission maxima at 640 and 647 nm, are observed. The 640 nm emitting component appears within the time resolution of the experiment and then decays with a time constant of 27 ps. In contrast, the 647 nm emitting component is built up with a 3.5 ps rise time and undergoes a subsequent decay with a time constant of 3.5 ns. The 3.5 ps rise kinetics are attributed to relaxations in the electronically excited state preceding the nanosecond fluorescence, which is ascribed to emission out of the thermally equilibrated S(1) state. The 27 ps fluorescence, which appears within the experimental response of the streak camera, is suggested to originate from a second minimum on the excited-state potential-energy surface. The population of the secondary excited state is suggested to reflect a very fast motion out of the Franck-Condon region along a reaction coordinate different from the one connecting the Franck-Condon region with the S(1) potential-energy minimum. The 27 ps-component is an emissive intermediate on the reactive excited-state pathway, as its decay yields the intermediate photoproduct, which has been identified previously (J. Phys. Chem. B 2006, 110, 4399-4406). No emission of the photoproduct is observed. The results of the time-resolved fluorescence study allow a detailed spectral characterization of the emission of the excited states in protochlorophyllide a, and the refinement of the kinetic model deduced from ultrafast absorption measurements.  相似文献   

7.
Spectroscopic and excited-state properties of tri-9-anthrylborane (TAB), showing unique absorption and fluorescence characteristics originating from p(boron)-pi(anthryl group) orbital interactions, were studied in 12 solvents. Although the absorption maximum energy (nu(a)) of TAB which appeared at around 21 x 10(3) cm(-1) (band I) was almost independent of the solvent polarity parameter, f(X) (f(X) = (D(s) - 1)/(2D(s) + 1) - (n(2) - 1)/(2n(2) + 1) where D(s) and n represent the static dielectric constant and the refractive index of a solvent, respectively), the fluorescence maximum energy (nu(f)) showed a linear correlation with f(X). The f(X) dependence of the value of nu(a) - nu(f) demonstrated that the change in the dipole moment of TAB upon light excitation was approximately 8.0 D, indicating that absorption band I was ascribed to an intramolecular charge-transfer transition in nature. The excited electron of TAB was thus concluded to localize primarily on the p orbital of the boron atom. Furthermore, it was shown that the fluorescence lifetime and quantum yield of TAB varied from 11.8 to 1.1 ns and from 0.41 to 0.02, respectively, with an increase in f(X). The present results indicated that the nonradiative decay rate constant (k(nr)) of TAB was influenced significantly by f(X). Excited-state decay of TAB was understood by intramolecular back-electron (charge) transfer from the p orbital of the boron atom to the pi orbital of the anthryl group, which was discussed in terms of the energy gap dependence of k(nr). Specific solvent interactions of TAB revealed by the present spectroscopic and photophysical studies are also discussed.  相似文献   

8.
The excited-state dynamics of protochlorophyllide a, a porphyrin-like compound and, as substrate of the NADPH/protochlorophyllide oxidoreductase, a precursor of chlorophyll biosynthesis, is studied by femtosecond absorption spectroscopy in a variety of solvents, which were chosen to mimic different environmental conditions in the oxidoreductase complex. In the polar solvents methanol and acetonitrile, the excited-state dynamics differs significantly from that in the nonpolar solvent cyclohexane. In methanol and acetonitrile, the relaxation dynamics is multiexponential with three distinguishable time scales of 4.0-4.5 ps for vibrational relaxation and vibrational energy redistribution of the initially excited S1 state, 22-27 ps for the formation of an intermediate state, most likely with a charge transfer character, and 200 ps for the decay of this intermediate state back to the ground state. In the nonpolar solvent cyclohexane, only the 4.5 ps relaxational process can be observed, whereas the intermediate intramolecular charge transfer state is not populated any longer. In addition to polarity, solvent viscosity also affects the excited-state processes. Upon increasing the viscosity by adding up to 60% glycerol to a methanolic solution, a deceleration of the 4 and 22 ps decay rates from the values in pure methanol is found. Apparently not only vibrational cooling of the S1 excited state is slowed in the more viscous surrounding, but the formation rate of the intramolecular charge transfer state is also reduced, suggesting that nuclear motions along a reaction coordinate are involved in the charge transfer. The results of the present study further specify the model of the excited-state dynamics in protochlorophyllide a as recently suggested (Chem. Phys. Lett. 2004, 397, 110).  相似文献   

9.
A new fluorochromic dye was obtained from the reaction of 9-aminoacridine with ethyl-2-cyano-3-ethoxyacrylate. It displays complex fluorescence that is ascribed to normal emission from the acridine chromophore in addition to excited-state intramolecular charge transfer (ESICT) formed upon light excitation. The analysis of the fluorescence decays in different solvents reveals two short-lived components in the range of 80-450 ps and 0.7-3.2 ns, ascribed to the formation and decay of the intramolecular charge transfer (ICT) state, in addition to a third component of about 9.0 ns, which is related to the normal emission from the acridine singlet excited state, probably in an enol-imine tautomeric form. The ICT emission is readily quenched by water addition to polar solvents, and this effect is ascribed to changes in the keto-amine/enol-imine equilibrium of this fluorochromic dye.  相似文献   

10.
The S2 → S0 fluorescence spectra and quantum yields and the S2 lifetimes of 2,2,3,3-tetramethylindanethione (TMIT) have been measured in several solvents using a synchronously pumped picosecond dye laser excitation system. The S2 nonradiative decay rate is markedly solvent dependent. In inert perfluoroalkane solvents remarkably large S2-S0 fluorescence quantum yields (θf = 0.14) and long S2 lifetimes (τ = 880 ps) are measured. Hydrocarbons are efficient excited-state quenchers.  相似文献   

11.
Excited state relaxation of N-(triphenylmethyl)-salicylidenimine (MS1) in protic and aprotic solvents has been investigated by means of absorption pump-probe spectroscopy with femtosecond time resolution and fluorescence spectroscopy with picosecond time resolution. Short-lived excited states and long-lived photoproducts have been identified from the differential absorption spectra. Excited states and photoproducts were different under excitation of enol-closed and cis-keto tautomers. As a result, the commonly accepted excited state relaxation model of aromatic anils, which assumes an ultrafast transformation of excited enol-closed tautomers into cis-keto tautomers, has been modified. Performed quantum chemical calculations suggest that hydrogen-bonded ethanol molecules facilitate formation of cis-keto tautomers and are responsible for their different relaxation pathways in comparison with relaxation of excited enol-closed tauromers. Fluorescence decay on a nanosecond time scale was attributed to aggregated MS1 molecules.  相似文献   

12.
The crystal structure of 2-butylamino-4-nitro-5-methyl pyridine N-oxide (2B5M) and solution studies of both 2B5M and 2-methylamino-4-nitro-5-methyl pyridine (2M5M) N-oxide are presented. Steady-state absorption and emission measurements were employed for both molecules while a picosecond fluorescence up-conversion technique was used to follow the dynamic behavior of the 2M5M system. The experimental methods were complemented by DFT and TD DFT B3LYP/6-31G(d,p) calculations involving ground and excited-state optimization which in the case of the smaller 2M5M molecule were extended to the CAM-B3LYP/6-31G(d,p) method. The solvent effect is incorporated by applying the polarizable continuum (PCM) model. The data reveal that the 2B5M molecule crystallizes in the monoclinic space group P2(1)/c and its crystal lattice is composed of monomers with intramolecular N-H···O [2.572(3) ?] hydrogen bonds, connected into a polymer network by weak intermolecular C-H…O [3.2-3.4 ?]-type interactions. Quantum-chemical calculations show that the aminoalkyl substitutent in aminoalkyl-pyridine N-oxides is a specific determinant of the CT nature of the lowest-lying excited electronic ππ* state, distinguishing them from other nitroaromatic compounds. The results of both picosecond fluorescence up-conversion experiments in different solvents and quantum-chemical calculations suggest that in nonpolar media the ESIPT process in 2M5M is favored, while in polar acetonitrile, the N* → PT* transition demands barrier-crossing and thus unfavorable thermodynamic conditions do not allow the ESIPT to occur. The signals of picosecond fluorescence up-conversion of 2M5M are solvent- and emission-wavelength dependent. The three time components found in a weakly polar isooctane-dioxane mixture have been attributed to solvation dynamics (~500 fs), and to relaxation of N* and PT* forms while in acetonitrile, a very rapid fluorescence decay with a time constant (2.3-4.0 ps) indicative of the presence of the normal (N*) form was observed. Much shorter fluorescence lifetimes in alcohols (a few picoseconds) and in D(2)O (less than 200 fs) than in aprotic solvents suggest that in protic media, the solvent molecules participate in the ESIPT, bridging between the methylamine group and the N-oxide group of 2M5M.  相似文献   

13.
Intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino)cinamate (EDAC) in various solvents has been studied by steady-state absorption and emission, picosecond time-resolved fluorescence spectroscopy and femtosecond transient absorption experiments as well as time-dependent density functional theory (TDDFT). Large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The energy for 0,0 transition (ν0,0) for EDAC shows very good linear correlation with static solvent dielectric property. The relaxation dynamics of EDAC in the excited state can be effectively described by a “three state” model where, the locally excited (LE) state converts into the ICT state within 350 ± 100 fs. A combination of solvent reorganization and intramolecular vibrational relaxation within 0.5–6 ps populates the relaxed ICT state which undergoes fluorescence decay within few tens to hundreds of picoseconds.  相似文献   

14.
The effects of solvent polarity on the fluorescence spectra and fluorescence decays of β-(1-pyrenyl)ethyl p-cyanobenzoate (P2CN) were investigated in detail using binary solvents consisting of various mixing ratios of isooctane-ethyl acetate or ethyl acetate-acetonitrile (dielectric constants ()=1.94–36.2). Whereas both the intensity and wavelength maxima of an intramolecular exciplex emission (EX) are dependent on the solvent polarity, only the intensity of an emission from the locally excited pyrene (LE) is dependent on the solvents used. When monitored at 377 nm, the picosecond SPC (single photon counting) measurements reveal a slow decay (>150 ns) in addition to a fast decay (<1 ns) of the locally excited P2CN. There are also two decays for the EX which vary the intensity ratios by the monitored wavelength. The decay rate constants, kEX1 and kEX2, have a good linear correlation with the dielectric constants of the solvents, indicating that there exist two kinds of exciplexes. It is suggested that the decays of the locally excited-state of P2CN are so fast due to result of the efficient electron transfer that the two kinds of intramolecular exciplexes are formed from the two discrete conformers in the ground state.  相似文献   

15.
《Chemical physics letters》1985,121(6):507-512
Rate constants for the excited-state proton transfer reaction of carbazole in aqueous alkaline solution have been determined using picosecond single photon counting. Fluorescence decay measurements show that the back reaction is slow compared to the fluorescence decay time and therefore equilibrium is not attained in the excited state. The validity of a pK value for the lowest excited state determined from steady-state fluorescence measurements assuming equilibrium is discussed. It is concluded that the thermodynamic pK* value for carbazole is 10.98.  相似文献   

16.
Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles (polyacrylamide, PAAm) was reported. Ultrafast fluorescence dynamics of polymer/water solution was monitored using a fluorescent probe molecule (C153). In the femtosecond time-resolved fluorescence measurement at 480 nm, slowly decay components having lifetimes of tau(1) approximately 53 ps and tau(2) approximately 5 ns were observed in addition to rapid fluorescence decay. Picosecond time-resolved fluorescence spectra of C153/PAAm/H2O solution were also measured. In the time-resolved fluorescence spectra of C153/PAAm/H2O, a peak shift from 490 to 515 nm was measured, which can be assigned to the solvation dynamics of polymer fine particles. The fluorescence peak shift was related to the solvation response function and two time constants were determined (tau(3) approximately 50 ps and tau(4) approximately 467 ps). Therefore, the tau(1) component observed in the femtosecond time-resolved fluorescence measurement was assigned to the solvation dynamics that was observed only in the presence of polymer fine particles. Rotational diffusion measurements were also carried out on the basis of the picosecond time-resolved fluorescence spectra. In the C153/PAAm/H2O solution, anisotropy decay having two different time constants was also derived (tau(6) approximately 76 ps and tau(7) approximately 676 ps), indicating the presence of two different microscopic molecular environments around the polymer surface. Using the Stokes-Einstein-Debye (SED) equation, microscopic viscosity around the polymer surface was evaluated. For the area that gave a rotational diffusion time of tau(6) approximately 76 ps, the calculated viscosity is approximately 1.1 cP and for tau(7) approximately 676 ps, it is approximately 10 cP. The calculated viscosity values clearly revealed that there are two different molecular environments around the polyacrylamide fine particles.  相似文献   

17.
Photophysical properties of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) in various solvents were investigated using time- and space-correlated single photon counting. DASPMI is known to selectively stain mitochondria in living cells.1,2 The uptake and fluorescence intensity of DASPMI in mitochondria is a dynamic measure of membrane potential. Hence, an endeavor has been made to elucidate the mechanism of DASPMI fluorescence by obtaining spectrally resolved fluorescence decays in different solvents. A biexponential decay model was sufficient to globally describe the wavelength-dependent fluorescence in ethanol and chloroform. While in glycerol, a three-exponential decay model was necessary for global analysis. In the polar low-viscous solvent water, a monoexponential decay model fitted the decay data. The sensitivity of DASPMI to solvent viscosity was analyzed using various proportions of glycerol-ethanol mixtures. The lifetimes were found to increase with increasing solvent viscosity. The negative amplitudes of the short lifetime component found in chloroform and glycerol at the longer wavelengths validated the formation of new excited-state species from the initially excited state. Time-resolved emission spectra in chloroform and glycerol showed a biphasic increase of spectral width and emission maxima. The spectral width had an initial fast increase within 150 ps and a near constant thereafter. A three-state model of generalized scheme, on the basis of successive formation of locally excited state (LE), intramolecular charge transfer state (ICT), and twisted intramolecular charge transfer (TICT) state, has been proposed to explain the excited-state kinetics. The presumed role of solvation dynamics of ICT and TICT states leading to the asymmetrical broadening and structureless fluorescence has been substantiated by the decomposition of time-resolved emission spectra in chloroform, glycerol, and ethanol/glycerol mixtures.  相似文献   

18.
The intramolecular charge transfer (ICT) reaction of 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) in n-hexane and acetonitrile (MeCN) is investigated by picosecond fluorescence experiments as a function of temperature and by femtosecond transient absorption measurements at room temperature. NTC6 in n-hexane is dual fluorescent from a locally excited (LE) and an ICT state, with a quantum yield ratio Phi'(ICT)/Phi(LE) of 0.35 at +25 degrees C and 0.67 at -95 degrees C, whereas in MeCN mainly an ICT emission is observed. From the temperature dependence of Phi'(ICT)/Phi(LE) for NTC6 in n-hexane, an LE/ICT enthalpy difference DeltaH of -2.4 kJ/mol is determined. For comparison, 1-isopropyl-6-cyano-1,2,3,4-tetrahydroquinoline (NIC6) is also investigated. This molecule does not undergo an ICT reaction, because of its larger energy gap DeltaE(S1,S2). From the molar absorption coefficient epsilonmax of NTC6 as compared with other aminobenzonitriles, a ground-state amino twist angle theta of approximately 22 degrees is deduced. The increase of epsilonmax between n-hexane and MeCN indicates that theta decreases when the solvent polarity becomes larger. Whereas single-exponential LE fluorescence decays are obtained for NIC6 in n-hexane and MeCN, the LE and ICT decays of NTC6 in these solvents are double exponential. For NTC6 in n-hexane at -95 degrees C, with a shortest decay time of 20 ps, the forward (ka=2.5x10(10) s(-1)) and backward (kd=2.7x10(10) s(-1)) rate constants for the LE<-->ICT reaction are determined from the time-resolved LE and ICT fluorescence spectra. For NTC6 in n-hexane and MeCN, the excited-state absorption (ESA) spectrum at 200 fs after excitation is similar to the LE(ESA) spectra of NIC6 and 4-(dimethylamino)benzonitrile (DMABN), showing that LE is the initially excited state for NTC6. These results indicate that the LE states of NTC6, NIC6, and DMABN have a comparable molecular structure. The ICT(ESA) spectrum of NTC6 in n-hexane and MeCN resembles that of DMABN in MeCN, likewise indicating a similar ICT structure for NTC6 and DMABN. From the decay of the LE absorption and the corresponding growing-in for the ICT state of NTC6, it is concluded that the ICT state originates from the LE precursor and is not formed by direct excitation from S0, nor via an S2/ICT conical intersection. The same conclusion was made from the time-resolved (picosecond) fluorescence spectra, where there is no ICT emission at time zero. The decay of the LE(ESA) band of NTC6 in n-hexane occurs with a shortest time tau2 of 2.2 ps. The ICT reaction is much faster (tau2 = 0.82 ps) in the strongly polar MeCN. The absence of excitation wavelength dependence (290 and 266 nm) for the ESA spectra in MeCN also shows that LE is the ICT precursor. With NIC6 in n-hexane and MeCN, a decay or growing-in of the femtosecond ESA spectra is not observed, in line with the absence of an ICT reaction involving an S2/ICT conical intersection.  相似文献   

19.
We studied the direct proton transfer (PT) from electronically excited D-luciferin to several mild bases. The fluorescence up-conversion technique is used to measure the rise and decay of the fluorescence signals of the protonated and deprotonated species of D-luciferin. From a base concentration of 0.25 M or higher the proton transfer rates to the fluoride, dihdyrogen phosphate or acetate bases are fast and comparable. The fluorescence signals are nonexponential and complex. We suggest that the fastest decay component arises from a direct proton transfer process from the hydroxyl group of D-luciferin to the mild base. The proton donor and acceptor molecules form an ion pair prior to photoexcitation. Upon photoexcitation solvent rearrangement occurs on a 1 ps time-scale. The PT reaction time constant is ~2 ps for all three bases. A second decay component of about 10 ps is attributed to the proton transfer in a contact pair bridged by one water molecule. The longest decay component is due to both the excited-state proton transfer (ESPT) to the solvent and the diffusion-assisted PT process between a photoacid and a base pair positioned remotely from each other prior to photoexcitation.  相似文献   

20.
Femtosecond transient absorption spectroscopy was used to study singlet diphenylcarbene generated by photodissociation of diphenyldiazomethane with a UV pulse at 266 nm. Absorption by singlet diphenylcarbene was detected and characterized for the first time. Similar band shapes were observed in acetonitrile and in cyclohexane with lambda(max) approximately 370 nm. The singlet absorption decays by intersystem crossing to triplet diphenylcarbene at rates that agree with previous measurements. The singlet absorption band is completely formed 1 ps after the pump pulse. It is preceded by a strong and broad absorption band, which is tentatively assigned to excited-state absorption by a singlet diazo excited state. In neat alcohol solvents the growth and decay of the diphenylmethyl cation was observed. This species is formed by proton transfer from an alcohol molecule to singlet diphenylcarbene. Since a shell of solvent molecules surrounds each nascent carbene, the intrinsic rate of protonation in the absence of diffusion could be measured. In methanol, proton transfer occurs with a time constant of 9.0 ps, making this the fastest known intermolecular proton-transfer reaction to carbon. In O-deuterated methanol proton transfer occurs in 15.0 ps. Slower rates were observed in the longer alcohols. The protonation times correlate reasonably well with solvation times in these alcohols, suggesting that solvent fluctuations are the rate-limiting step. In all alcohols studied, the carbocations decay on a somewhat slower time scale to yield diphenylalkyl ethers. In methanol and ethanol the rate of decay is determined by reaction with neutral solvent nucleophiles. There is evidence in 2-propanol that geminate reaction within the initial ion pair is faster than reaction with solvent. No isotope effect was observed for the reaction of the diphenylmethyl carbocation in methanol. Using comparative actinometry the quantum yield of protonation was measured. In methanol, the quantum yield of carbocations reaches a maximum value of 0.18 approximately 18 ps after the pump pulse. According to our analysis, 30% of the photoexcited diazo precursor molecules are eventually protonated. Somewhat lower protonation efficiencies are observed in the other alcohols. Because the primary quantum yield for formation of singlet diphenylcarbene is still unknown, the importance of reaction channels that might exist in addition to protonation cannot be determined at present. Singlet carbenes are powerful, photogenerated bases that open new possibilities for fundamental studies of proton transfer in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号