首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAMT has been studied for its microanalytical uses. Selective microevaluation of Au(III), Ag(I), and Tl(I) have been carried out with MAMT, incorporating masking and solvent extraction techniques in conjunction with ring colorimetry. MAMT has also been used as a chromogenic reagent for Au(III), while PTC had to be used for Ag(I) and Tl(I) as their MAMT complexes are white.  相似文献   

2.
Transition metal complexes of ditertiary aminomethylphosphine ligand, (Ph2PCH2)NCH3 [N,N‐bis(diphenylphospinomethyl)aminomethane], dppam, with metal ions which are Ag(I), Au(I), Cu(I), and Co(II) have been synthesized under nitrogen atmosphere by the Schlenk method. [Ag(dppam)2]NO3 ( 1 ), [Au(dppam)2]Cl ( 2 ), and [Cu(dppam)2]Cl ( 3 ) complexes have been isolated as colorless solids, whereas [CoCl2(dppam)] ( 4 ) complex as a blue solid. All complexes have been characterized by atomic absorption, FT‐IR, NMR (1H, 13C, 31P) spectroscopic, thermogravimetric/differantial thermal analysis (TG/DTA), and elemental analysis techniques. Antimicrobial activity of 1 , 2 , 3 , and 4 were studied in vitro on 13 bacteria and 4 yeasts. The cobalt(II) phosphine complex has shown the best antimicrobial activity in comparison with the other metal complexes. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:484–491, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20145  相似文献   

3.
Reaction of [(HBpz(3))RhCl(2)(PPh(3))] (Hpz = pyrazole) with silver salts AgA (A = BF(4), NO(3), SbF(6)) affords the unexpected heterotrinuclear compounds [[(HBpz(3))Rh(PPh(3))(mu-Cl)(2)](2)Ag]A (A = BF(4) (1), NO(3) (2), SbF(6) (3)). The compounds have been fully characterized by IR, (1)H, (31)P[(1)H], and (13)C[(1)H] NMR spectroscopy and FAB(+) mass spectrometry. The solid structure of compound 1 was determined by single-crystal X-ray diffraction. The cation consists of two (HBpz(3))RhCl(2)(PPh(3)) units bonded to a silver atom through two double mu-Cl bridges in an unusual distorted square-planar arrangement.  相似文献   

4.
Rhodium (I) bis-olefin complexes Cp*Rh(VTMS)(2) and CpRh(VTMS)(2) (Cp* = C(5)Me(5), Cp = C(5)Me(4)CF(3), VTMS = vinyl trimethylsilane) were found to catalyze the addition of aromatic aldehydes to olefins to form ketones. Use of the more electron-deficient catalyst CpRh(VTMS)(2) results in faster reaction rates, better selectivity for linear ketone products from alpha-olefins, and broader reaction scope. NMR studies of the hydroacylation of vinyltrimethylsilane showed that the starting Rh(I) bis-olefin complexes and the corresponding Cp*/Rh(CH(2)CH(2)SiMe(3))(CO)(Ar) complexes were catalyst resting states, with an equilibrium established between them prior to turnover. Mechanistic studies suggested that CpRh(VTMS)(2) displayed a faster turnover frequency (relative to Cp*Rh(VTMS)(2)) because of an increase in the rate of reductive elimination, the turnover-limiting step, from the more electron-deficient metal center of CpRh(VTMS)(2). Reaction of Cp*/Rh(CH(2)CH(2)SiMe(3))(CO)(Ar) with PMe(3) yields acyl complexes Cp*/Rh[C(O)CH(2)CH(2)SiMe(3)](PMe(3))(Ar); measured first-order rates of reductive elimination of ketone from these Rh(III) complexes established that the Cp ligand accelerates this process relative to the Cp* ligand.  相似文献   

5.
6.
The intermolecular interaction energies of the CH3OCH3? CH4, CF3OCH3? CH4, and CF3OCF3? CH4 systems were calculated by ab initio molecular orbital method with the electron correlation correction at the second order Møller–Plesset perturbation (MP2) method. The interaction energies of 10 orientations of complexes were calculated for each system. The largest interaction energies calculated for the three systems are ?1.06, ?0.70, and ?0.80 kcal/mol, respectively. The inclusion of electron correlation increases the attraction significantly. It gains the attraction ?1.47, ?1.19, and ?1.27 kcal/mol, respectively. The dispersion interaction is found to be the major source of the attraction in these systems. In the CH3OCH3? CH4 system, the electrostatic interaction (?0.34 kcal/mol) increases the attraction substantially, while the electrostatic energies in the other systems are not large. Fluorine substitution of the ether decreases the electrostatic interaction, and therefore, decreases the attraction. In addition the orientation dependence of the interaction energy is decreased by the substitution. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1472–1479, 2002  相似文献   

7.
A chiral bidentate phosphoramidite (5a) was synthesized from Shibasaki’s linked-(R)-BINOL and P(NMe2)3 as a new ligand for rhodium(I)-catalyzed asymmetric 1,4-addition of arylboronic acids to α,β-unsaturated carbonyl compounds. The effects of 5a and Feringa’s monodentate phosphoramidite (4, R1, R2 = Et) on the yields and enantioselectivities were fully investigated. The reaction was significantly accelerated in the presence of a base such as KOH and Et3N, allowing the reaction to be completed at the lower temperatures than 50 °C. The addition to cyclic enones such as 2-cyclopentenone, 2-cyclohexenone and 2-cycloheptenone at 50 °C in the presence of an [Rh(coe)2Cl]2-4 (R1, R2 = Et) complex resulted in enantioselectivities up to 98%, though it was less effective for acyclic enones (0–70% ee). On the other hand, a complex between [Rh(nbd)2]BF4 and 5a completed the addition to cyclic enones within 2 h at room temperature in the presence of Et3N with 86–99% yields and 96–99.8% ee. This catalyst was also effective for acyclic enones, resulting in 62–98% yields and 66–94% ee. The 1,4-additions of arylboronic acids to unsaturated lactones and acyclic esters with rhodium(I)-phosphoramidites complexes were also investigated.  相似文献   

8.
Sulfacetamide complexes of Ag(I), Cu(II), and Cd(II) were synthesized and characterized by the elemental analyses and IR and 1H NMR spectra. Structural assessment revealed two modes of coordination in the sulfacetamide complexes, showing that sulfacetamide reacts as a bidentate ligand and coordinates to Ag(I) and Cd(II) through the amido and sulfonyl oxygens and to Cu(II) through the NH2 nitrogen. Molar conductance measurements in DMSO showed that both the complexes are nonelectrolytes in nature, which allowed they to be assigned the formulas [Ag(SAM-Na)(NO3)H2O)]·3H2O, [Cu(SAM-Na)2(Cl)2], and [Cd(SAM-Na)(Cl)2]·10H2O. The kinetic and thermodynamic parameters of the thermal decomposition reactions of the complexes were estimated from the TG/DTG curves by the Coats–Redfern and Horowitz–Metzeger methods. The surface morphology of sulfacetamide complexes was scanned using X-ray powder diffraction (XRD) and scanning electron microscope (SEM) analyses.  相似文献   

9.
Coordination studies of the pyridine-triazole diad to copper(i) and silver(i) reveal the potential and conditions for the solution- and solid-state self-assembly of supramolecular architectures based on this motif.  相似文献   

10.
N,N-Bis(3-butenyl)amines can be prepared by the double allylation of either (2-azaallyl)stannanes or (2-azaallyl)nitriles, both of which thereby act as synthetic equivalents to amine alpha,alpha'-dications (2-azaallyl dications). Allylmagnesium bromide is the reagent of choice for the double allylation of both substrates, although allyllithium also effects the double allylation of (2-azaallyl)nitriles. Ring-closing metathesis can be performed on the N-protected amines, or with in situ protonation, on the free amines to provide 2,3,6,7-tetrahydroazepines. (2-Azaallyl)nitriles can also be monoallylated to provide N-(3-butenyl)aminonitriles, whereas the double allylation of (2-azaallyl)stannanes cannot be stopped at monoallylation. (2-Azaallyl)silanes undergo monoallylation to give N-(3-butenyl)aminosilanes but do not undergo double allylation.  相似文献   

11.
A highly regioselective intermolecular cyclotrimerization of terminal alkynes has been developed based on the use of the cationic rhodium(I)/DTBM-Segphos complex. This method can be applied to a variety of terminal alkynes to provide 1,2,4-trisubstituted benzenes in high yield and with high regioselectivity. A chemo- and regioselective intermolecular crossed-cyclotrimerization of dialkyl acetylenedicarboxylates with a variety of terminal alkynes has also been developed based on the use of the cationic rhodium(I)/H8-BINAP complex, furnishing 3,6-disubstituted phthalates in high yields. It constitutes a highly efficient new method for intermolecular crossed-cyclotrimerization of two different monoynes in terms of catalytic activity, chemo- and regioselectivity, scope of substrates, and ease of operation. The versatility of this new crossed-alkyne cyclotrimerization procedure is demonstrated through its application to one-step synthesis of a [6]metacyclophane and [7]-[12]paracyclophanes from the corresponding terminal alpha,omega-diynes. Mechanistic studies have revealed that the chemo- and regioselectivity of this crossed-alkyne cyclotrimerization are determined by the preferential formation of a specific rhodium metallacycle derived from a terminal alkyne and a dialkyl acetylenedicarboxylate.  相似文献   

12.
The highly luminescent bimetallic cyanide materials, Gd(terpy)(H(2)O)(NO(3))(2)M(CN)(2) (M = Au, Ag; GdAu and GdAg, respectively) are quick and easy to synthesize under ambient conditions. A characteristic feature exhibited by both solid-state compounds is an intense red emission when excited with UV light. Additionally, GdAu exhibits a broad-band green emission upon excitation in the near UV region. A combination of structural and spectroscopic results for the compounds helps explain the underlying conditions responsible for their unique properties. Single-crystal X-ray diffraction experiments expose their structural features, including the fact that they are isostructural. Crystallographic data for the representative GdAu compound (Mo K(α), λ = 0.71073 ?, T = 290 K): triclinic, space group P ?1, a = 7.5707(3) ?, b = 10.0671(4) ?, c = 15.1260(4) ?, α = 74.923(3)°, β = 78.151(3)°, γ = 88.401(3)°, V = 1089.04(7) ?(3), and Z = 2. Although the compounds crystallize as dimers containing M···M distances smaller than the sum of their van der Waals radii, the Au···Au (3.5054(4) ?) and/or the Ag···Ag (3.6553(5) ?) interactions are relatively weak and are not responsible for the low energy red emission. Rather, the green emission in GdAu presumably originates from the [Au(CN)(2)(-)](2) dimeric excimer, while the [Ag(CN)(2)(-)](2) dimers in GdAg do not display visible emission at either 290 or 77 K. The unusual red emission exhibited by both compounds likely originates from the formation of an excited state exciplex that involves intermolecular π-stacking of 2,2':6',2"-terpyridine ligands. The room-temperature and low-temperature steady-state photoluminescent properties, along with detailed time-dependent, lifetime, and quantum yield spectroscopic data provide evidence regarding the sources of the multiple visible emissions exhibited by these complexes.  相似文献   

13.
New azo-azomethine dyes were prepared by reaction of p-aminobenzoic acid, o-anisidine, o-nitroaniline, and p-bromoaniline with salicylaldehyde respectively to form azo compounds and then condensation by urea to form 4-(R-arylazo 2-salicylaldene)-urea azo-azomethine derivatives (I(a-d)). The complexes of these ligands with Ag(I), Cu(II), Zn(II) and Hg(II) metal ions were prepared. The structure of the free ligands and their complexes were characterized by using elemental analysis (C, H, N), (1)H NMR, IR and UV-Vis-spectra. The proton dissociation constants of the ligands and the stability constant of their complexes have been determined potentiometrically in 40% (v/v) alcohol-water medium as well as the stoichiometry of complexes were determined conductometrically. The data reveal that the stoichiometries for all complexes were prepared in molar ratios (1:1) and (1:2) (M:L). The electrolytic and nonelectrolytic natures of the complexes were assigned based on molar conductance measurements. The thermogravimetric (TG), and differential thermal analyses (DTA) were studied in nitrogen atmosphere with heating rate 10°C/min. The kinetic and thermodynamic parameters for thermal decomposition of complexes have been calculated by graphical method using Coats-Redfern (CR) method.  相似文献   

14.
The compound [Ni(PPh(3))(3)][BF(4)] x BF(3) x OEt(2) was isolated in crystalline form from the olefin oligomerization catalyst system Ni(PPh(3))(4)/BF(3) x OEt(2) and structurally characterized by X-ray diffraction. The influence of vibronic coupling on the EPR parameters of three-coordinate metal complexes with a 3d(9) electronic configuration was investigated within the framework of ligand field theory. Analytical expressions for g-tensor components and isotropic hyperfine coupling constants with ligand nuclei were obtained using first-order perturbation theory. It has been shown that the account of the vibronic interaction in the excited state predicts the existence of three-axial anisotropy of the g-tensor even at the level of first-order perturbation theory; two axes of the g-tensor located in a plane of three-coordinate structure can rotate about the main z axis when a compound is distorted by motion of ligands. It has been shown that in three points of the potential energy surface minimum, for which linear and quadric constants of the vibronic interactions have an identical signs, the HFS isotropic constant from one ligand is larger than HFS constants from the other two; for different vibronic constant signs the ratio between HFS constants varies on opposite. This theoretical researches are in the quality consent with experimental data for a three-coordinate Ni(I) and Cu(II) flat complexes.  相似文献   

15.
Classical Lewis acids such as AlCl(3), TiCl(4), and SnCl(4), believed to be unusable as catalysts in aqueous medium, efficiently catalyzed regio- and stereoselective azidolysis and iodolysis of alpha,beta-epoxycarboxylic acids in water at pH 4.0 and 1.5, respectively. The concept of water-tolerant metal-salt is reexamined in direct relationship to the aqua ion hydrolysis constant.  相似文献   

16.
17.
Verma KK 《Talanta》1979,26(4):277-282
Four analytical reagents, tetrathionate, iron(III), cystine and hexacyanoferrate(III) have been tested with respect to their specificity for oxidation of thiols to disulphides. Of a number of thiols studied, most have a strong tendency to oxidize beyond the disulphide stage with several of the commonly employed reagents. Tetrathionate, cystine and hexacyanoferrate(III) function in phosphate buffer of pH 7, but iron(III) does not require rigid control of pH, although the solution should be only feebly acidic. The reagents were used in excess and the thiosulphate or cysteine formed in the reaction of thiols with tetrathionate or cystine respectively was determined. The residual iron(III) was measured by adding ascorbic acid or mercaptoacetic acid and titrating with 2,6-dichlorophenolindophenol or iodine monochloride respectively; surplus hexacyanoferrate(III) was back-titrated with ascorbic acid. All four reagents react selectively with thiols even in the presence of several possible interfering substances and afford results that are accurate and precise.  相似文献   

18.
An N3O Schiff base (L), 1?:?1 condensate of benzil monohydrazone and 4-pyridine carboxaldehyde, and its Zn(II), Cd(II), and Ag(I) complexes were synthesized and characterized by elemental analyses and various spectroscopic techniques. The crystal structures of [ZnL2Br2] (1), [CdL2I2]·CH2Cl2, (2)·CH2Cl2, and [Ag(L)2]ClO4 (3) have been determined using X-ray crystallography. The Zn(II) and Cd(II) complexes show a tetrahedral configuration whereas in the asymmetric unit of 3, two independent coordination units of Ag(I) are present. Carbonyl–silver interaction, weak C–H?O interaction, and also π–π interaction are present in 3 in the solid state. The synthesized complexes have antibacterial activity against Klebsiella pneumoniae 114, Escherichia coli K88, Salmonella typhi ATCC 34, Bacillus subtilis UC564, and Staphylococcus aureus ATCC25923. The results showed that in some cases the antibacterial activities of the complexes were comparable to standard antibiotics Tetracycline and Streptomycin. The antifungal activities of the complexes were also studied for Aspergillus niger, Aspergillus oryzae, Penicillium notatum, and Saccharomyces cerevisiae. MIC values of 1, 2·CH2Cl2, and 3 are less than the Nystatin standard.  相似文献   

19.
New heteroaryl-substituted o-divinylbenzenes, 2,2'-(1,2-phenylenedivinylene)difuran (9), 2,2'-(1,2-phenylenedivinylene)bisbenzo[b]furan (10), and 2,2'-(1,2-phenylenedivinylene)bisnaphtho[2,1-b]furan (11), were prepared and irradiated at various concentrations; intramolecular photocycloaddition and intermolecular [2+2] twofold photoaddition reactions took place to give bicyclo[3.2.1]octadiene derivatives 12-14 and cyclophane derivatives 15-17, respectively. Compound 11 was the most selective of these o-divinylbenzenes, which, owing to pi-pi intra- or intermolecular complexation, gave only the exo-bicyclo[3.2.1]octadiene derivative 14 at low concentrations, and only the cyclophane derivative 17 at high concentrations.  相似文献   

20.
Ag9I3(SeO4)2(IO3)2 was obtained for the first time by reacting a stoichiometric mixture of Ag2O, AgI and SeO2 at elevated oxygen pressure (255 MPa) and at a temperature of 500 °C. Ag9I3(SeO4)2(IO3)2 was characterized by X‐ray powder diffraction, differential scanning calorimetry, impedance spectroscopy and single crystal structure analysis. The crystal structure was solved by direct methods (I23, Z = 8, a = 12.9584(6) Å, V = 2175.9(2) Å3 and R1 = 2.70 %). The crystal structure consists of isolated SeO4 tetrahedra and trigonal IO3 pyramids separated by Ag+ and I ions. Each four of the SeO42– and IO3 anions aggregate, forming a novel supramolecular building block, showing a hetero‐cubane like structure. According to the results of impedance measurements, Ag9I3(SeO4)2(IO3)2 is a good silver ion conductor. The compound shows an abrupt increase in the ionic conductivity in the temperature range of 115 to 147 °C, and has a silver ion conductivity of 7.1 × 10–5 Ω–1 cm–1 at 25 °C. The activation energy for silver ion conduction is 0.45 eV, in the temperature range from 25 to 115°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号