首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemisorption of CO2 by aqueous-hindered amines has been investigated experimentally and theoretically. Negative-ion ESI–MS analysis of solutions containing a sterically hindered amine and a source of 13CO2 reveals peaks corresponding to [M–H + 45]?. These ions readily lose 45 Da when subjected to collisional activation, and together with other key fragments confirms the generation of the 13C-labelled carbamate derivatives. The thermochemistry of the two key capture reactions: $$2.{\text{amine }} + {\text{ CO}}_{ 2} { \leftrightarrows }{\text{amine}} - {\text{CO}}_{ 2}^{ - } + {\text{ amine}} - {\text{H}}^{ + } {\kern 1pt} \quad 1:{\text{carbam}}$$ $${\text{amine }} + {\text{ CO}}_{ 2} + {\text{ H}}_{ 2} {\text{O}}{ \leftrightarrows }{\text{HCO}}_{ 3}^{ - } + {\text{ amine}} - {\text{H}}^{ + } \quad 2:{\text{ bicarb}}$$ at 298 K was modelled using composite chemistry methods, CCSD(T), DFT, and SM8 free energies of solvation. The aqueous reaction free energies (ΔG 298) for reaction 1 are predicted to be more negative than ΔG 298 for reaction 2 when amine = ammonia, 2-aminoethanol (MEA), 2-amino-2-methyl-1-propanol (AMP), 2-amino-2-hydroxymethyl-propane-1,3-diol (tris), and 2-piperidinemethanol (2-PM). For AMP, tris, and 2-PM, activation free energies ΔG 298 ? for reaction 1 (SM8 + CCSD(T)/6-311 ++G(d,p)//M08-HX/MG3S: 38–67 kJ mol?1) are smaller than the corresponding values for 2 (109–113 kJ mol?1). For 2-PM, the computed carbamate ΔG 298 ? (38 kJ mol?1) is comparable to the MEA value (45 kJ mol?1), whereas the primary amines with tertiary alpha carbons have slightly larger values (60–70 kJ mol?1). The organic amine values are much lower than the value for ammonia (93 kJ mol?1). The results indicate CO2 chemisorption proceeds via a carbamate intermediate for all aqueous primary and secondary amines. Hindered carbamates are susceptible to further chemical transformations following their formation.  相似文献   

2.
The velocity cross correlation integrals $$D_{{\text{ab}}}^{\text{J}} = (N/3)\mathop \smallint \limits_{\text{o}}^\infty< {\text{v}}_{{\text{1a}}} ({\text{t}}) \cdot {\text{v}}_{{\text{2b}}} (0) > {\text{dt,}} {\text{a}} {\text{ = }} {\text{1,2;}} {\text{b}} {\text{ = }} {\text{1,2}}$$ can be estimated from the intradiffusion coefficients D 1 ° and D 2 ° at each mole fraction x1 of component 1 on the basis of the exact relations among the Onsager phenomenological coefficients together with an assumed equation relating the joint diffusion coefficients D ab J . The results from several such equations are compared with experimental data and with similar results derived by Hertz in a different way to represent the behavior of f ab ≡D ab J x b in ideal reference systems. In some cases the agreement with experimental data for relatively ideal systems is even better than given by Hertz's results. For greater accuracy in predicting the D ab J from D a dg data one would need a prediction of the limiting value of D aa J at xa=0 for a=1,2. Presently known theory does not give a basis for estimating this limit reliably.  相似文献   

3.
We have observed the $ {\tilde{\text{A}}}^{1} {\text{A}}_{\text{u}} \leftarrow {\tilde{\text{X}}}^{ 1} {\text{A}}_{\text{g}} $ fluorescence excitation spectra of jet-cooled oxalyl halides, (COR)2, where R = F, Cl, and compared them with corresponding gas-phase absorption spectra obtained earlier. As a result, we have found some peculiarities of the excited state dynamics of the molecules under study: high effective fluorescence for oxalyl fluoride molecules excited to the single vibronic levels of b g symmetry and high efficiency of radiationless transitions for molecules excited to the single vibronic levels of a g symmetry. For oxalyl chloride, it has been found very intensive 7 0 2 8 1 0 (but not 8 0 1 or 8 1 1 ) hot transition. These results are compared with data for glyoxal, (COH)2, obtained earlier.  相似文献   

4.
pH-spectrophotometric titration data were used to determine the mixed dissociation constants of sildenafil citrate at different ionic strengths I at temperatures of 288.15, 298.15 and 310.15?K, with the use of two different multiwavelength and multivariate treatments of spectral data, SPECFIT32 and SQUAD(84) nonlinear regression analyses, and INDICES factor analysis. The reliability of the dissociation constants of this drug was proven with goodness-of-fit tests of the pH-spectra. The thermodynamic dissociation constants $ {\text{p}}K_{{{\text{a}},i}}^{\text{T}} $ were estimated by a nonlinear regression of (pK a , I) data using the Debye-Hückel equation: $ {\text{p}}K_{{{\text{a}}, 1}}^{\text{T}} $ ?=?2.79 (1), 3.03 (3) and 3.53 (1); $ {\text{p}}K_{{{\text{a}}, 2}}^{\text{T}} $ ?=?4.97 (2), 5.23 (2) and 5.34 (1); $ {\text{p}}K_{{{\text{a}}, 3}}^{\text{T}} $ ?=?8.14 (2), 7.93 (1) and 7.47 (1); $ {\text{p}}K_{{{\text{a}}, 4}}^{\text{T}} $ ?=?9.47 (2), 9.30 (1) and 9.13 (4); and $ {\text{p}}K_{{{\text{a}}, 5}}^{\text{T}} $ ?=?10.73 (5), 10.75 (3) and 10.79 (5) at T?=?288.15, 298.15 and 310.15?K, respectively, where the numbers in parentheses are the standard deviations in the last significant digits. Concurrently, the experimentally determined five thermodynamic dissociation constants are in a good agreement with their computational prediction of the SPARC program based on knowledge of the chemical structures. The factor analysis of spectra in the INDICES program predicts the correct number of light-absorbing components when the instrumental error is known and when the signal-to-error ratio SER is higher than 10. A rough estimation of the dissociation enthalpies ??H 0 (kJ·mol?1) and entropies ??S 0 (J·K?1·mol?1) has been obtained from the temperature variation of the thermodynamic dissociation constants by means of the van??t Hoff equation.  相似文献   

5.
Heats of transport for dilute aqueous HCl solutions at 25°C have been determined from the measurements of thermoelectric powers of the thermocell $$(T){\text{ }}Ag{\text{ - }}AgCl/HCl(ag.)/Ag - AgCl{\text{ (T + }}\Delta {\text{T)}}$$ The variation of the heat of transport with concentration has been examined up to 0.04M and the molar heat of transport at infinite dilution obtained by extrapolation. Present experimental results may be summarized by the equation $${\text{Q}}^ * = {\text{ }}3397 - 3734I^{1/2} {\text{ + }}33610{\text{I}}^{{\text{3/2}}}$$ whereQ * is the heat of transport in cal-mole?1 andI is the ionic strength.  相似文献   

6.
Thermal analysis (TG/DTG/QMS), performed for [Sr(OS(CH3)2)6](ClO4)2 in a flow of argon and in temperature range of 295–585 K, indicated that the compound is completely stable up to ca. 363 K, and next starts to decompose slowly, and in the temperature at ca. 492 K looses four (CH3)2SO molecules per one formula unit. During further heating [Sr(DMSO)2](ClO4)2 melts and simultaneously decomposes with explosion. Differential scanning calorimetry (DSC) measurements performed in the temperature range of 93–370 K for [Sr(DMSO)6](ClO4)2 revealed existence of the following phase transitions: glass ? crystal phase Cr5 at T g  ≈ 164 K (235 K), phase Cr5 → phase Cr4 at $ T_{\text{c6}}^{\text{h}} $  ≈ 241 K, phase Cr4 → phase Cr3 at $ T_{\text{c5}}^{\text{h}} $  ≈ 255 K, phase Cr3 → phase Cr2 at $ T_{\text{c4}}^{\text{h}} $  ≈ 277 K, phase Cr2 ? phase Cr1 at $ T_{\text{c3}}^{\text{h}} $  ≈ 322 K and $ T_{\text{c3}}^{\text{c}} $  ≈ 314 K, phase Cr1 ? phase Rot2 at $ T_{\text{c2}}^{\text{h}} $  ≈ 327 K and $ T_{\text{c2}}^{\text{c}} $  ≈ 321 K and phase Rot2 ? phase Rot1 at $ T_{\text{c1}}^{\text{h}} $  ≈ 358 K and $ T_{\text{c1}}^{\text{c}} $  ≈ 347 K. Entropy changes values of the phase transitions at $ T_{\text{c1}}^{\text{h}} $ and $ T_{\text{c2}}^{\text{h}} $ (?S ≈ 79 and 24 J mol?1 K?1, respectively) indicated that phases Rot1 and Rot2 are substantially orientationally disordered. The solid phases (Cr1–Cr5) are more or less ordered phases (?S ≈ 7, 10, 4 and 3 J mol?1 K?1, respectively). Phase transitions in [Sr(DMSO)6](ClO4)2 were also examined by Fourier transform middle infrared spectroscopy (FT-MIR). The characteristic changes in the FT-MIR absorption spectra of the low- and high-temperature phases observed at the phase transition temperatures discovered by DSC allowed us to relate these phase transitions to the changes of the reorientational motions of DMSO ligands and/or to the crystal structure changes.  相似文献   

7.
The standard (p° = 0.1 MPa) molar enthalpies of formation in the crystalline state of the 2-, 3- and 4-hydroxymethylphenols, $ {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{cr)}} = \, - ( 3 7 7. 7 \pm 1. 4)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ , $ {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{cr) }} = - (383.0 \pm 1.4) \, \,{\text{kJ}}\,{\text{mol}}^{ - 1} $ and $ {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{cr)}} = - (382.7 \pm 1.4)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ , respectively, were derived from the standard molar energies of combustion, in oxygen, to yield CO2(g) and H2O(l), at T = 298.15 K, measured by static bomb combustion calorimetry. The Knudsen mass-loss effusion technique was used to measure the dependence of the vapour pressure of the solid isomers of hydroxymethylphenol with the temperature, from which the standard molar enthalpies of sublimation were derived using the Clausius–Clapeyron equation. The results were as follows: $ \Updelta_{\rm cr}^{\rm g} H_{\rm m}^{\rm o} = (99.5 \pm 1.5)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ , $ \Updelta_{\rm cr}^{\rm g} H_{\rm m}^{\rm o} = (116.0 \pm 3.7) \,{\text{kJ}}\,{\text{mol}}^{ - 1} $ and $ \Updelta_{\rm cr}^{\rm g} H_{\rm m}^{\rm o} = (129.3 \pm 4.7)\,{\text{ kJ mol}}^{ - 1} $ , for 2-, 3- and 4-hydroxymethylphenol, respectively. From these values, the standard molar enthalpies of formation of the title compounds in their gaseous phases, at T = 298.15 K, were derived and interpreted in terms of molecular structure. Moreover, using estimated values for the heat capacity differences between the gas and the crystal phases, the standard (p° = 0.1 MPa) molar enthalpies, entropies and Gibbs energies of sublimation, at T = 298.15 K, were derived for the three hydroxymethylphenols.  相似文献   

8.
Calorimetric and effusion techniques, complemented by computational calculations were combined to determine the standard (p o = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, $\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {\text{g}} \right)$ , at T = 298.15 K, of 1-(3,5-dichlorophenyl)-2,5-dimethylpyrrole and 2,5-dimethyl-1-phenyl-3-pyrrolecarboxaldehyde, as (107.2 ± 2.7) and (25.9 ± 3.2) kJ mol?1, respectively. These values were derived from the respective standard molar enthalpies of formation, in the crystalline phase, ${{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} \left( {\text{cr}} \right)$ , at T = 298.15 K, obtained from combustion calorimetry measurements, and from the standard molar enthalpies of sublimation, at T = 298.15 K, determined by the Knudsen effusion mass-loss method. The gas-phase enthalpies of formation of both experimentally studied compounds were also estimated by G3(MP2)//B3LYP computations, using a set of working reactions; the results obtained are in good agreement with the experimental data. With this computational approach, the enthalpies of formation of 1-(3,5-dichlorophenyl)pyrrole, 1-(3,5-dichlorophenyl)-2-methylpyrrole, 1-phenyl-3-pyrrolecarboxaldehyde and 2-methyl-1-phenyl-3-pyrrolecarboxaldehyde were also estimated and a value for their ${{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} \left( {\text{g}} \right)$ has been defined. Moreover, the molecular structures of the six molecules were established, their geometrical parameters were determined and the influence of methyl groups in the pyrrole ring (2 and 5 positions) on the phenyl/pyrrole torsion angle was analyzed. All the results were also interpreted in terms of enthalpic increments.  相似文献   

9.
The enthalpies of dissolution of gemcitabine hydrochloride in 0.9 % normal saline (medical) and citric acid solution were measured using a microcalorimeter at 309.65 K under atmospheric pressure. The differential enthalpy $ \left( {\Updelta_{\text{dif}} H_{\text{m}}^{{{\theta}}} } \right) $ and molar enthalpy $ \left( {\Updelta_{\text{sol}} H_{\text{m}}^{{{\theta}}} } \right) $ of dissolution were determined, respectively. The corresponding kinetic equation described the dissolution were elucidated to be da/dt = 10?3.84(1 ? a)0.92 and da/dt = 10?3.80(1 ? a)1.21. Besides, the half-life, $ \Updelta_{\text{sol}} H_{\text{m}}^{{{\theta}}} ,\;\Updelta_{\text{sol}} G_{\text{m}}^{{{\theta}}} $ and $ \Updelta_{\text{sol}} S_{\text{m}}^{{{\theta}}} $ of the dissolution were also obtained. Obviously, it will provide a simple and reliable method for the clinical application of gemcitabine hydrochloride.  相似文献   

10.
Two DOTA-based proligands bearing a pendant diphenylphosphinamide 4a and 4b were synthesised. Their Eu(III) complexes exhibit sensitised emission when excited at 270 nm via the diphenylphosphinamide chromophore. Hydration states of q = 1.5 were determined from excited state lifetime measurements (Eu.4a $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 2. 1 4 \,{\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 0. 6 4 \,{\text{ms}}^{ - 1} $ ; Eu.4b $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 2. 6 7\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 1. 1 8 \,{\text{ms}}^{ - 1} $ ). In the presence of human serum albumin (HSA) (0.1 mM Eu.4a/b, 0.67 mM HSA, pH 7.4) q = 0.4 for Eu.4a ( $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 1. 3 4\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 0. 7 5\, {\text{ms}}^{ - 1} $ ) and q = 0.6 for Eu.4b ( $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 1. 8 3\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 1.0 5 \,{\text{ms}}^{ - 1} $ ). Relaxivites (pH 7.4, 298 K, 20 MHz) of the Gd(III) complexes in the absence and presence of HSA (0.1 mM Gd.4a/b, 0.67 mM HSA) were: Gd.4a (r 1 = 7.6 mM?1s?1 and r 1 = 11.7 mM?1s?1) and Gd.4b. (r 1 = 7.3 mM?1s?1 and r 1 = 16.0 mM?1s?1). These relatively modest increases in r 1 are consistent with the change in inner-sphere hydration on binding to HSA shown by luminescence measurements on Eu.4a/b. Binding constants for HSA determined by the quenching of luminescence (Eu) and enhancement of relaxivity (Gd) were Eu.4a (27,000 M?1 ± 12%), Eu.4b (32,000 M?1 ± 14%), Gd.4a (21,000 M?1 ± 15%) and Gd.4b (26,000 M?1 ± 15%).  相似文献   

11.
The standard (p o = 0.1 MPa) molar energies of combustion, $ \Updelta_{\text{c}} H_{\text{m}}^{\text{o}} $ , for indole-2-carboxylic acid and indole-3-carboxaldehyde, in the crystalline state, were determined, at T = 298.15 K, using a static bomb combustion calorimeter. For both compounds, the vapour pressures as function of temperature were measured, by the Knudsen effusion technique, and the standard molar enthalpies of sublimation, $ \Updelta_{\text{cr}}^{\text{g}} H_{\text{m}}^{\text{o}} $ , at T = 298.15 K, were derived by the Clausius–Clapeyron equation. From the experimental results, the standard (p o = 0.1 MPa) molar enthalpies of formation in the condensed and gaseous phases, at T = 298.15 K, of indole-2-carboxylic acid and indole-3-carboxaldehyde were derived. The results are analysed in terms of structural enthalpic increments.  相似文献   

12.
The densities, ρ, speeds of sound, u, and heat capacities, (C P)mix, for binary 1-ethyl-3-methylimidazolium tetrafluoroborate (1) + cyclopentanone or cyclohexanone (2) mixtures within temperature range (293.15–308.15 K) and excess molar enthalpies, H E, at 298.15 K have been measured over the entire composition range. The excess molar volumes, V E, excess isentropic compressibilities, \( \kappa_{\text{S}}^{\text{E}}, \) and excess heat capacities, \( C_{\text{P}}^{\text{E}}, \) have been computed from the experimental results. The V E, \( \kappa_{\text{S}}^{\text{E}} \) , H E, and \( C_{\text{P}}^{\text{E}} \) values have been calculated and compared with calculated values from Graph theory. It has been observed that V E, \( \kappa_{\text{S}}^{\text{E}} \) , H E, and \( C_{\text{P}}^{\text{E}} \) values were predicted by Graph theory compare well with their experimental values. The V E, \( \kappa_{\text{S}}^{\text{E}}, \) and H E thermodynamic properties have also been analyzed in terms of Prigogine–Flory–Patterson theory.  相似文献   

13.
The mechanism of reaction of the di-Ru-substituted polyoxometalate, {??-[(H2O)RuIII(??-OH)2RuIII(H2O)][X n+W10O36]}(8?n)?, I_X, with O2, i.e. I_X?+?O2????{??-[(·O)RuIV(??-OH)2RuIV(O·)][X n+W10O36]}(8?n)??+?2H2O, (1), was studied at the B3LYP density functional and self-consistent reaction field IEF-PCM (in aqueous solution) levels of theory. The effect of the nature of heteroatom X (where X?=?Si, P and, S) on the calculated energies and mechanism of the reaction (1) was elucidated. It was shown that the nature of X only slightly affects the reactivity of I_X with O2, which is a 4-electron oxidation process. The overall reaction (1): (a) proceeds with moderate energy barriers for all studied X??s [the calculated rate-determining barriers are X?=?Si (18.7?kcal/mol)?<?S (20.6?kcal/mol)?<?P (27.2?kcal/mol) in water, and X?=?S (18.7?kcal/mol)?<?P (21.4?kcal/mol)?<?Si (23.1?kcal/mol) in the gas phase] and (b) is exothermic [by X?=?Si [28.7 (22.1) kcal/mol]?>?P [21.4 (9.8) kcal/mol]?>?S [12.3 (5.0) kcal/mol]. The resulting $ \left\{ {\gamma - \left[ {\left( {^{ \cdot } {\text{O}}} \right) {\text{Ru}}^{\text{IV}} \left( {\mu - {\text{OH}}} \right)_{2} {\text{Ru}}^{\text{IV}} \left( {{\text{O}}^{ \cdot } } \right)} \right]\left[ {{\text{X}}^{{{\text{n}} + }} {\text{W}}_{10} {\text{O}}_{36} } \right]} \right\}^{{\left( {8 - {\text{n}}} \right) - }} $ , VI_X, complex was found to have two RuIV?=?O· units, rather than RuV?=?O units. The ??reverse?? reaction, i.e., water oxidation by VI_X is an endothermic process and unlikely to occur for X?=?Si and P, while it could occur for X?=?S under specific conditions. The lack of reactivity of VI_X biradical toward the water molecule leads to the formation of the stable [{Ru 4 IV O4(OH)2(H2O)4}[(??-XW10O36]2}m? dimer. This conclusion is consistent with our experimental findings; previously we prepared the $ \left[ {\left\{ {{\text{Ru}}_{4}^{\text{IV}} {\text{O}}_{4} ({\text{OH}})_{2} \left( {{\text{H}}_{ 2} {\text{O}}} \right)_{4} } \right\}} \right[\left( {\gamma - {\text{XW}}_{10} {\text{O}}_{36} } \right]_{2} \}^{{{\text{m}} - }} $ dimers for X?=?Si (m?=?10) [Geletii et al. in Angew Chem Int Ed 47:3896?C3899, 2008 and J Am Chem Soc 131:17360?C17370, 2009] and P (m?=?8) [Besson et al. in Chem Comm 46:2784?C2786, 2010] and showed them to be very stable and efficient catalysts for the oxidation of water to O2.  相似文献   

14.
The expressions to calculate the critical rate of temperature rise of thermal explosion $ ({\text{d}}T / {\text{d}}t)_{{\text{T}_{\text{b}} }} $ for energetic materials (EMs) were derived from the Semenov’s thermal explosion theory and autocatalytic reaction rate equation of nth order, CnB, Bna, first-order, apparent empiric-order, simple first-order, Au, apparent empiric-order of m = 0, n = 0, p = 1 and m = 0, n = 1, p = 1, using reasonable hypotheses. A method to determine the kinetic parameters in the autocatalytic-decomposing reaction rate equations and the $ ({\text{d}}T / {\text{d}}t)_{{\text{T}_{\text{b}} }} $ in EMs when autocatalytic decomposition converts into thermal explosion from data of DSC curves at different heating rate was presented. Results show that (1) under non-isothermal DSC conditions, the autocatalytic-decomposing reaction of NC (12.97 % N) can be described by the first-order autocatalytic reaction rate equation dα/dt = 1016.00exp(?174520/RT)(1 ? α) + 1016.00exp(?163510/RT)α(1 ? α); (2) the value of $ ({\text{d}}T / {\text{d}}t)_{{\text{T}_{\text{b}} }} $ for NC (12.97 % N) when autocatalytic decomposition converts into thermal explosion is 0.354 K s?1.  相似文献   

15.
Different tetraalkylammonium, viz. N+(CH3)4, N+(C2H5)4, N+(C3H7)4, N+(C4H9)4 along with simple ammonium salts of bis (2-ethylhexyl) sulfosuccinic acid have been prepared by ion-exchange technique. The critical micelle concentration of surfactants with varied counterions have been determined by measuring surface tension and conductivity within the temperature range 283–313 K. Counterion ionization constant, α, and thermodynamic parameters for micellization process viz., $\Delta G_m^{\text{0}} $ , $\Delta H_m^{\text{0}} $ , and $\Delta S_m^{\text{0}} $ and also the surface parameters, Γmax and Amin, in aqueous solution have been determined. Large negative $\Delta G_m^{\text{0}} $ of micellization for all the above counterions supports the spontaneity of micellization. The value of standard free energy, $\Delta G_m^{\text{0}} $ , for different counterions followed the order $${\text{N}}^{\text{ + }} \left( {{\text{CH}}_{\text{3}} } \right)_4 >{\text{NH}}_{\text{4}}^{\text{ + }} >{\text{Na}}^{\text{ + }} >{\text{N}}^{\text{ + }} \left( {{\text{C}}_{\text{2}} {\text{H}}_5 } \right)_{\text{4}} {\text{ $>$ N}}^{\text{ + }} \left( {{\text{C}}_{\text{3}} {\text{H}}_{\text{7}} } \right)_4 >{\text{N}}^{\text{ + }} \left( {{\text{C}}_{\text{4}} {\text{H}}_{\text{9}} } \right)_4 $$ , at a given temperature. This result can be well explained in terms of bulkiness and nature of hydration of the counterion together with hydrophobic and electrostatic interactions.  相似文献   

16.
β-d-Xylosidase/α-l-arabinofuranosidase from Selenomonas ruminantium is the most active enzyme known for catalyzing hydrolysis of 1,4-β-d-xylooligosaccharides to d-xylose. Catalysis and inhibitor binding by the GH43 β-xylosidase are governed by the protonation states of catalytic base (D14, pK a 5.0) and catalytic acid (E186, pK a 7.2). Biphasic inhibition by triethanolamine of E186A preparations reveals minor contamination by wild-type-like enzyme, the contaminant likely originating from translational misreading. Titration of E186A preparations with triethanolamine allows resolution of binding and kinetic parameters of the E186A mutant from those of the contaminant. The E186A mutation abolishes the pK a assigned to E186; mutant enzyme binds only the neutral aminoalcohol $ \left( {{\text{pH}} - {\text{independent}}\;K_{\text{i}}^{\text{triethanolamine}} = 19\,{\text{mM}}} \right) $ , whereas wild-type enzyme binds only the cationic aminoalcohol $ \left( {{\text{pH}} - {\text{independent}}\;K_{\text{i}}^{\text{triethanolamine}} = 0.065\,{\text{mM}}} \right) $ . At pH 7.0 and 25°C, relative kinetic parameter, $ k_{\text{cat}}^{\text{4NPX}}/k_{\text{cat}}^{\text{4NPA}} $ , for substrates 4-nitrophenyl-β-d-xylopyranoside (4NPX) and 4-nitrophenyl-α-l-arabinofuranoside (4NPA) of E186A is 100-fold that of wild-type enzyme, consistent with the view that, on the enzyme, protonation is of greater importance to the transition state of 4NPA whereas ring deformation dominates the transition state of 4NPX.  相似文献   

17.
The standard Gibbs energies $ \left( {\Updelta {}_{\text{t}}G^\circ (i)} \right) $ ( Δ t G ° ( i ) ) and entropies $ \left( {\Updelta {}_{\text{t}}S^\circ } \right) $ ( Δ t S ° ) of transfer in aqueous mixtures of 1,2-dimethoxyethane (DME) containing 0, 20, 40, 60, 80, 100 wt-% DME have been determined from the solubility data of a series of homologous α-amino acids, evaluated by the formol titrimetric method. The observed result of Δt G°(i) and TΔt S°(i) against DME concentration profiles are complicated due to the various interaction effects. The chemical effects on the transfer Gibbs energies ( $ \Updelta_{\text{t}} G_{\text {ch}}^{ \circ } (i) $ Δ t G ch ° ( i ) ) and entropies of transfer $ T\Updelta_{\text{t}} S_{\text {ch}}^{ \circ } (i) $ T Δ t S ch ° ( i ) have been obtained after elimination of the cavity effect, calculated by the scaled particle theory, and dipole–dipole interaction effects, estimated by the use of Keesom-orientation expression for total transfer Gibbs energies Δt G°(i) and entropies Δt S°, respectively. The chemical transfer energetics of the zwitterionic homologous α-amino acids are guided by the composite effects of increased dispersion interaction, basicity and decreased acidity, hydrogen bonding capacity and hydrophobic hydration of the DME mixed solvent as compared to that of reference solvent, water.  相似文献   

18.
Fracture energy (G) of the symmetric amorphous polystyrene (PS)–PS interfaces that were partially healed at temperatures (T) below the glass transition temperature of the bulk ( $ T_{\text{g}}^{\text{bulk}} $ ) has been measured at ambient temperature and compared with those reported in the literature (G 0) for the symmetric PS–PS interfaces that were fully healed at T?>? $ T_{\text{g}}^{\text{bulk}} $ . It has been shown that G developed at T?<? $ T_{\text{g}}^{\text{bulk}} $ corresponds to G 0 for the polymers having the molecular weight larger than the entanglement molecular weight. This behaviour indicates that topological entanglements can be formed across the contact zone of the polymers with glassy bulk via the interdiffusion of the chain segments located in the viscoelastic contact layer.  相似文献   

19.
The crystal structure of n-undecylammonium bromide monohydrate was determined by X-ray crystallography. The crystal system of the compound is monoclinic, and the space group is P21/c. Molar enthalpies of dissolution of the compound at different concentrations m/(mol·kg?1) were measured with an isoperibol solution–reaction calorimeter at T = 298.15 K. According to the Pitzer’s electrolyte solution model, the molar enthalpy of dissolution of the compound at infinite dilution ( $ \Updelta_{\text{sol}} H_{\text{m}}^{\infty } $ ) and Pitzer parameters ( $ \beta_{\text{MX}}^{(0)L} $ and $ \beta_{\text{MX}}^{(1)L} $ ) were obtained. Values of the apparent relative molar enthalpies ( $ {}^{\Upphi }L $ ) of the title compound and relative partial molar enthalpies ( $ \bar{L}_{2} $ and $ \bar{L}_{1} $ ) of the solute and the solvent at different concentrations were derived from experimental values of the enthalpies of dissolution.  相似文献   

20.
Prior to this study there were no thermodynamic data for isosaccharinate (ISA) complexes of Fe(III) in the environmental range of pH (>~4.5). This study was undertaken to obtain such data in order to predict Fe(III) behavior in the presence of ISA. The solubility of Fe(OH)3(2-line ferrihydrite), referred to as Fe(OH)3(s), was studied at 22?±?2?°C in: (1) very acidic (0.01?mol·dm?3 H+) to highly alkaline conditions (3?mol·dm?3 NaOH) as a function of time (11?C421?days), and fixed concentrations of 0.01 or 0.001?mol·dm?3 NaISA; and (2) as a function of NaISA concentrations ranging from approximately 0.0001 to 0.256?mol·dm?3 and at fixed pH values of approximately 4.5 and 11.6 to determine the ISA complexes of Fe(III). The data were interpreted using the SIT model that included previously reported stability constants for $ {{\text{Fe(ISA}})_{n}}^{3 - n} $ (with n varying from 1 to 4) and Fe(III)?COH complexes, and the solubility product for Fe(OH)3(s) along with the values for two additional complexes (Fe(OH)2(ISA)(aq) and $ {\text{Fe(OH)}}_{ 3} ( {{\text{ISA}})_{2}}^{2 - } $ ) determined in this study. These extensive data provided a log10 K 0 value of 1.55?±?0.38 for the reaction $ ({\text{Fe}}^{ 3+ } + {\text{ISA}}^{-} + 2 {\text{H}}_{ 2} {\text{O}} \rightleftarrows {\text{Fe(OH}})_{ 2} {\text{ISA(aq}}) + 2 {\text{H}}^{ + } ) $ and a value of ?3.27?±?0.32 for the reaction $ ({\text{Fe}}^{ 3+ } + 2 {\text{ISA}}^{-} + 3 {\text{H}}_{ 2} {\text{O}} \rightleftarrows {\text{Fe(OH)}}_{ 3} ( {\text{ISA}})_{2}^{2 - } + 3 {\text{H}}^{ + } ) $ and show that ISA forms strong complexes with Fe(III) which significantly increase the Fe(OH)3(s) solubility at pH?<~12. Thermodynamic calculations show that competition of Fe(III) with tetravalent ions for ISA does not significantly affect the solubilities of tetravalent hydrous oxides (e.g., Th and Np(IV)) in ISA solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号