首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Three new 19-membered macrolides, amphidinolides T2 (2), T3 (3), and T4 (4), structurally related to amphidinolide T1 (1) have been isolated from two strains of marine dinoflagellates of the genus Amphidinium. The structures of 2-4 were elucidated on the basis of spectroscopic data. The absolute configurations at C-7, C-8, and C-10 of 1-4 were determined by comparison of NMR data of their C-1-C-12 segments with those of synthetic model compounds for the tetrahydrofuran portion. The biosynthetic origins of amphidinolide T1 (1) were investigated on the basis of 13C NMR data of a 13C enriched sample obtained by feeding experiments with [1-(13)C], [2-(13)C], and [1,2-(13)C2] sodium acetates and 13C-labeled sodium bicarbonate in the cultures of the dinoflagellate. These incorporation patterns suggested that amphidinolide T1 (1) was generated from four successive polyketide chains, an isolated C1 unit formed from C-2 of acetates, and three unusual C2 units derived only from C-2 of acetates. Furthermore, it is noted that five oxygenated carbons of C-1, C-7, C-12, C-13, and C-18 were not derived from the C-1 carbonyl, but from the C-2 methyl of acetates.  相似文献   

2.
Simple and efficient asymmetric syntheses of several new allyl bromides as C9–C14 fragments of cytotoxic macrolactones, amphidinolides B, D, G, H, and L, have been developed starting from accessible 1-[(2S)-4,4-dimethoxy-2-methylbutyl]cyclopropyl methanesulfonate prepared through cyclopropanol intermediates. Original synthetic approaches to the C7–C16, C7–C14, and C9–C16 amphidinolide fragments are also described.  相似文献   

3.
[structure: see text] Absolute stereochemistry of amphidinolides G (1) and H (2), potent cytotoxic 27- and 26-membered macrolides, respectively, isolated from a marine dinoflagellate Amphidinium sp., was determined by X-ray diffraction analysis, synthesis of a degradation product (3) of 2, and interconversion between 1 and 2.  相似文献   

4.
A synthesis of an amphidinolides G and H C3-C18 subunits is reported. The C10-C18 segment 4 was prepared by a Negishi cross-coupling, whereas the synthesis of the C3-C9 fragment 5 employed an asymmetric cyanosilylation as the key step. The two segments were coupled by lithiation of iodide 4 and trapping of the anion with amide 5. The allylic epoxide moiety could be synthesized from the protected anti- mesylate 22.  相似文献   

5.
A new cytotoxic 12-membered macrolide, amphidinolide W (1), has been isolated from a marine dinoflagellate Amphidinium sp., and the structure was elucidated by spectroscopic data including (13)C-(13)C INADEQUATE correlations for its (13)C-enriched sample. The absolute stereochemistry of 1 was assigned by combination of J-based configuration analysis and modified Mosher method. Amphidinolide W (1) is the first macrolide without an exomethylene unit among all amphidinolides obtained so far.  相似文献   

6.
Structures of 8-G-1-[p-YC6H4Se(O)]C10H6 [1 (G = H), 2 (G = F), 3 (G = Cl), and 4 (G = Br): Y = H, OMe, OCH2Ph, t-Bu, Me, Cl, and NO2] and (1-C10H7)2SeO (5) are investigated by the X-ray crystallographic analysis. Structures of 1 are all A with regard to the naphthyl group (1 (A)), where the Se-C(Ar) and Se-O bonds are perpendicular to and parallel to the naphthyl plane, respectively. Those of 2-4 are also A. Since structures of 8-G-1-(p-YC6H4Se)C10H6 [7 (G = F), 8 (G = Cl), and 9 (G = Br)] are all B, the results exhibit that B of 7-9 change dramatically to A of 2-4 with the introduction of O atoms. The factor to determine the A structures of 1-4 by O is called O dependence. The origin of the O dependence is the nonbonded np(O)- - -pi(Nap) interaction, which results in CT from np(O) to pi(Nap) since O in 1-4 is highly electron rich due to the polar Se+=O- bond and pi(Nap) acts as an acceptor. There are two types of np(O)'s, npy(O) and npz(O), if the directions of the Se-O bond and the p-orbitals of pi(Nap) are taken in the x- and z-axes, respectively. Double but independent np(O)- - -pi(Nap) interactions in 5 lead to 5 (AA). The conformation of the p-YC6H4Se group in 1 changes depending on Y (Y dependence), although the effect is not strong. The Y dependence is explained on the basis of the magnitude of CT of the np(O)-->pi(Ar) type in 1, in addition to the np(O)- - -pi(Nap) interaction. The structure around the Se=O group in 1 is close to that of 5 (AA), if the accepting ability of the p-YC6H4Se group is similar to that of the naphthyl group. A of 2-4 are further stabilized by the np(G)- - -sigma(Se-O) 3c-4e interactions, which are called G dependence. QC calculations performed on the methyl analogues of 1-4 (11-14, respectively) reproduced the observed structures, supported the above discussion, and revealed the energy profiles. The energy-lowering effect of the O dependence would be close to the G dependence of the nonbonded n(Br)- - -sigma(Se-O) 3c-4e interaction in 14 if the steric repulsion between Br and Se is contained in the G dependence. The value is roughly predicted as 20 kJ mol(-1). The structures of 1-5 are well explained by O, G, and Y dependences.  相似文献   

7.
Rate constants and ion product channels have been measured for electron attachment to four SF5 compounds, SF5C6H5, SF5C2H3, S2F10, and SF5Br, and these data are compared to earlier results for SF6, SF5Cl, and SF5CF3. The present rate constants range over a factor of 600 in magnitude. Rate constants measured in this work at 300 K are 9.9+/-3.0x10(-8) (SF5C6H5), 7.3+/-1.8x10(-9) (SF5C2H3), 6.5+/-2.5x10(-10) (S2F10), and 3.8+/-2.0x10(-10) (SF5Br), all in cm3 s-1 units. SF5- was the sole ionic product observed for 300-550 K, though in the case of S2F10 it cannot be ascertained whether the minor SF4- and SF6- products observed in the mass spectra are due to attachment to S2F10 or to impurities. G3(MP2) electronic structure calculations (G2 for SF5Br) have been carried out for the neutrals and anions of these species, primarily to determine electron affinities and the energetics of possible attachment reaction channels. Electron affinities were calculated to be 0.88 (SF5C6H5), 0.70 (SF5C2H3), 2.95 (S2F10), and 2.73 eV (SF5Br). An anticorrelation is found for the Arrhenius A-factor with exothermicity for SF5- production for the seven molecules listed above. The Arrhenius activation energy was found to be anticorrelated with the bond strength of the parent ion.  相似文献   

8.
A new scheme has been proposed for the synthesis of cytotoxic macrocyclic lactones, amphidinolides G and H. Synthetic analogs of the C7?C14, C15?C19, and C20?C26 fragments of amphidinolides G and H have been prepared from the same starting compound, (3S)-4-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-3-methylbutan-1-ol. The developed procedures and obtained products may be used in the synthesis of related compounds containing similar structural fragments.  相似文献   

9.
10.
The kinetics and H atom channel yield at both 298 and 195 K have been determined for reactions of CN radicals with C2H2 (1.00+/-0.21, 0.97+/-0.20), C2H4 (0.96+/-0.032, 1.04+/-0.042), C3H6 (pressure dependent), iso-C4H8 (pressure dependent), and trans-2-C4H8 (0.039+/-0.019, 0.029+/-0.047) where the first figure in each bracket is the H atom yield at 298 K and the second is that at 195 K. The kinetics of all reactions were studied by monitoring both CN decay and H atom growth by laser-induced fluorescence at 357.7 and 121.6 nm, respectively. The results are in good agreement with previous studies where available. The rate coefficients for the reaction of CN with trans-2-butene and iso-butene have been measured at 298 and 195 K for the first time, and the rate coefficients are as follows: k298K=(2.93+/-0.23)x10(-10) cm3 molecule(-1) s(-1), k195K=(3.58+/-0.43)x10(-10) cm3 molecule(-1) s(-1) and k298K=(3.17+/-0.10)x10(-10) cm3 molecule(-1) s(-1), k195K=(4.32+/-0.35)x10(-10) cm3 molecule(-1) s(-1), respectively, where the errors represent a combination of statistical uncertainty (2sigma) and an estimate of possible systematic errors. A potential energy surface for the CN+C3H6 reaction has been constructed using G3X//UB3LYP electronic structure calculations identifying a number of reaction channels leading to either H, CH3, or HCN elimination following the formation of initial addition complexes. Results from the potential energy surface calculations have been used to run master equation calculations with the ratio of primary:secondary addition, the average amount of downward energy transferred in a collision DeltaEd, and the difference in barrier heights between H atom elimination and an H atom 1, 2 migration as variable parameters. Excellent agreement is obtained with the experimental 298 K H atom yields with the following parameter values: secondary addition complex formation equal to 80%, DeltaEd=145 cm(-1), and the barrier height for H atom elimination set 5 kJ mol(-1) lower than the barrier for migration. Finally, very low temperature master equation simulations using the best fit parameters have been carried out in an increased precision environment utilizing quad-double and double-double arithmetic to predict H and CH3 yields for the CN+C3H6 reaction at temperatures and pressures relevant to Titan. The H and CH3 yields predicted by the master equation have been parametrized in a simple equation for use in modeling.  相似文献   

11.
The molecular structures of 1,2-closo-P(2)B(10)H(10) (1) and 1,2-closo-As(2)B(10)H(10) (2) have been determined by gas electron diffraction and the results obtained compared with those from computation at the MP2/6-31G** level of theory. The level of agreement is good for 2 (root-mean-square [rms] misfit for As and B atoms 0.0297 ?) and very good for 1 (rms misfit for P and B atoms 0.0082 ?). In comparing the structures of 1 and 2 with that of 1,2-closo-C(2)B(10)H(12) (I) it is evident that expansion of the polyhedron from I to 1 to 2 is restricted only to the heteroatom vertices and the B(6) face to which these are bound. Following deboronation (at B3) and subsequent metallation, compounds 1 and 2 have been converted into the new metalladiheteroboranes 3-(η-C(9)H(7))-3,1,2-closo-CoAs(2)B(9)H(9) (4), 3-(η-C(10)H(14))-3,1,2-closo-RuAs(2)B(9)H(9) (5), 3-(η-C(5)H(5))-3,1,2-closo-CoP(2)B(9)H(9) (6), 3-(η-C(9)H(7))-3,1,2-closo-CoP(2)B(9)H(9) (7) and 3-(η-C(10)H(14))-3,1,2-closo-RuP(2)B(9)H(9) (8), the last three constituting the first examples of metalladiphosphaboranes. Together with the known compound 3-(η-C(5)H(5))-3,1,2-closo-CoAs(2)B(9)H(9) (3), compounds 4-8 have been analysed by NMR spectroscopy and (except for 8) single-crystal X-ray diffraction. The (11)B NMR spectra of analogous pairs of metalladiphosphaborane and metalladiarsaborane (6 and 3, 7 and 4, 8 and 5) reveal a consistently narrower (9-10 ppm) chemical shift range for the metalladiarsaboranes, the combined result of a deshielding of the lowest frequency resonance (B6) and an increased shielding of the highest frequency resonance (B8) via an antipodal effect. In crystallographic studies, compounds 3 and 5B (one of two crystallographically-independent molecules) suffer As/B disorder, but in both cases it was possible to refine distinct, ordered, components of the disorder, the first time this has been reported for metalladiarsaboranes. Moreover, whilst the Cp compounds 6 and 3 are disordered, their indenyl analogues 7 and 4 are either ordered or significantly less disordered, a consequence of both the reduced symmetry of an indenyl ligand compared to a Cp ligand and the preference of the former for a distinct conformation relative to the cage heteroatoms. Unexpectedly, whilst this conformation in the cobaltadiphosphaborane 7 is cis-staggered (similar to that previously established for the analogous cobaltadicarborane), in the cobaltadiarsaborane 4 the conformation is close to cis-eclipsed.  相似文献   

12.
The energetics of the phenolic O-H bond in a series of 2- and 4-HOC 6H 4C(O)Y (Y = H, CH3, CH 2CH=CH2, C[triple bond]CH, CH2F, NH2, NHCH 3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds and of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y, was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-hydroxybenzaldehyde (2HBA), 4-hydroxybenzaldehyde (4HBA), 2'-hydroxyacetophenone (2HAP), 2-hydroxybenzamide (2HBM), and 4-hydroxybenzamide (4HBM), at 298.15 K, were determined by micro- or macrocombustion calorimetry. The corresponding enthalpies of vaporization or sublimation were also measured by Calvet drop-calorimetry and Knudsen effusion measurements. The combination of the obtained experimental data led to Delta f H m (o)(2HBA, g) = -238.3 +/- 2.5 kJ.mol (-1), DeltafHm(o)(4HBA, g) = -220.3 +/- 2.0 kJ.mol(-1), Delta f H m (o)(2HAP, g) = -291.8 +/- 2.1 kJ.mol(-1), DeltafHm(o)(2HBM, g) = -304.8 +/- 1.5 kJ.mol (-1), and DeltafHm(o) (4HBM, g) = -278.4 +/- 2.4 kJ.mol (-1). These values, were used to assess the predictions of the B3LYP/6-31G(d,p), B3LYP/6-311+G(d,p), B3LYP/aug-cc-pVDZ, B3P86/6-31G(d,p), B3P86/6-311+G(d,p), B3P86/aug-cc-pVDZ, and CBS-QB3 methods, for the enthalpies of a series of isodesmic gas phase reactions. In general, the CBS-QB3 method was able to reproduce the experimental enthalpies of reaction within their uncertainties. The B3LYP/6-311+G(d,p) method, with a slightly poorer accuracy than the CBS-QB3 approach, achieved the best performance of the tested DFT models. It was further used to analyze the trends of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y evaluated by the ortho-para method and to compare the energetics of the phenolic O-H bond in 2- and 4-HOC 6H 4C(O)Y compounds. It was concluded that the O-H bond "strength" is systematically larger for 2-hydroxybenzoyl than for the corresponding 4-hydroxybenzoyl isomers mainly due to the presence of the intramolecular O...H hydrogen bond in the 2-isomers. The observed differences are, however, significantly dependent on the nature of the substituent Y, in particular, when an intramolecular H-bond can be present in the radical obtained upon cleavage of the O-H bond.  相似文献   

13.
A new approach to the synthesis of the C7-26 fragment of amphidinolides G and H was developed. In the sequence, the C7-18 portion of this fragment was synthesized using an acetylide coupling protocol, while an Evans alkylation and Sharpless asymmetric dihydroxylation were employed as key steps in construction of the C19-26 subfragment. Finally, both of these units were joined by utilizing an aldol coupling reaction to produce the target C7-26 fragment in good yield.  相似文献   

14.
Nine new vasodilative alkaloids, araguspongines A, B (1), C (2), D (3), E (4), F (5), G (6), H (7), and J (8), were isolated from an Okinawan marine sponge, Xestospongia sp. On the basis of chemical and physicochemical evidence, the absolute stereostructures of araguspongines B, D, E, F, G, H, and J were determined respectively as 1, 3, 4, 5, 6, 7, 8, and the relative stereostructure of araguspongine C was determined as 2 having two 1-oxaquinolizidine moieties. Araguspongines B, D, and E each comprised a pair of the enantiomers, 1a and 1b, 3a and 3b, and 4a and 4b, respectively.  相似文献   

15.
Nature is a pretty unselective “chemist” when it comes to making the highly cytotoxic amphidinolide macrolides of the B/G/H series. To date, 16 different such compounds have been isolated, all of which could now be approached by a highly convergent and largely catalysis‐based route (see figure). This notion is exemplified by the total synthesis of five prototype members of this family.

  相似文献   


16.
Ab initio calculations at the MP4(SDTQ)/6-311G//MP2/6-31G level were performed to study the structures and stabilities of the dimer of ethyl cation, (C(2)H(+)(5))(2), and related C(4)H(10)(2+) isomers. Two doubly hydrogen bridged diborane type trans 1 and cis 2 isomers were located as minima. The trans isomer was found to be more favorable than cis isomer by only 0.6 kcal/mol. Several other minima for C(4)H(10)(2+) were also located. However, the global energy minimum corresponds to C-H (C(4) position) protonated 2-butyl cation 10. Structure 10 was computed to be substantially more stable than 1 by 31.7 kcal/mol. The structure 10 was found to be lower in energy than 2-butyl cation 13 by 34.4 kcal/mol.  相似文献   

17.
Deng L  Chan HS  Xie Z 《Inorganic chemistry》2007,46(7):2716-2724
Reduction of boron-substituted carboranes o-R2C2B10Me8H2 (R = H, Et), thermal isomerization, and nucleophilic reaction of the resultant 13-vertex cobaltacarboranes were studied. Reaction of o-C2B10Me8H4 (1) with excess potassium metal in tetrahydrofuran (THF) gave, after recrystallization from a THF solution of 18-crown-6 ether, [[K(18-crown-6)(THF)2][K(18-crown-6)]][[4-(18-crown-6)-2,3,5,8,9,11,12,13-Me8-4,1,6-KC2B10H4]2] (2) in 78% yield. Interaction of 1 with excess sodium or potassium metal in THF, followed by treatment with CoCl2/CpNa and then aerobatic oxidation, afforded two boron-substituted 13-vertex cobaltacarboranes, 4-Cp-2,3,5,8,9,11,12,13-Me8-4,1,6-CoC2B10Me8H4 (3) and 4-Cp-2,3,5,9,10,11,12,13-Me8-4,1,6-CoC2B10Me8H4 (4), in 15% and 8% yield, respectively. Subsequently, thermal isomerization of 3 and 4 yielded another two new isomers, 4-Cp-2,3,5,6,8,11,12,13-Me8-4,1,9-CoC2B10Me8H4 (5) and 4-Cp-2,3,5,6,7,11,12,13-Me8-4,1,9-CoC2B10Me8H4 (6). Treatment of 3 or 4 with strong bases such as nBuLi and MeLi generated unexpected nucleophilic substitution products 4-nBuCp-2,3,5,8,9,11,12,13-Me8-4,1,6-CoC2B10Me8H4 (7), 4-nBuCp-2,3,5,9,10,11,12,13-Me8-4,1,6-CoC2B10Me8H4 (8a), and 4-MeCp-2,3,5,9,10,11,12,13-Me8-4,1,6-CoC2B10Me8H4 (8b) in good yields. Under the same reaction conditions, however, only one 13-vertex cobaltacarborane, 4-Cp-1,9-Et2-2,5,6,7,8,11,12,13-Me8-4,1,9-CoC2B10Me8H4 (10), was isolated when o-Et2C2B10Me8H2 (9) was used as the starting material. Complex 10 is a thermodynamically stable product and has a substitution pattern different from that of 3-6. These results show that the substituents on either the cage carbon or boron atoms have an important effect on the formation and thermal stability of the 13-vertex metallacarboranes. The formation of these complexes can be rationalized by the diamond-square-diamond mechanism.  相似文献   

18.
等电子-等自旋与非等旋反应的G2(MP2)和G2研究   总被引:1,自引:1,他引:1  
我们在前文[1-2]中分别用MP2-4/6-31G**//MP2/6-31G**及MP4/6-311G(2df,Zpd)//MP2/6-31G**研究了一些双原子氢化物、卤化物、硫化物和氧化物的化学反应的烂变·这些化学反应按如下类型分为四组,即(1)反应物与生成物之间为等电子一等自旋关系,(2)价层等电一等旅,(3)等施和(4)非等旅·结果表明,MP4/6-3fiG(2才,ZPd)对于(1),(2)和(3)类反应,基本上与实验误差小于士15kJ·mo-‘而对非等旋反应仍有较大误差;MPZ-4/6-31G””只对(1)类反应较好.由于PoPle等人近几年来创立的Gaussi…  相似文献   

19.
The structures of 8-G-1-(p-YC(6)H(4)Se)C(10)H(6) (1 (G = Cl) and 2 (G = Br): Y = H (a), OMe (b), Me (c), Cl (d), Br (e), COOEt (f), and NO(2) (g)) were investigated by X-ray crystallographic analysis, NMR spectroscopy, and ab initio MO calculations. The structures of all members in 1 and 2 are concluded to be type B, which is in striking contrast to the type A structure for 4d-g (4 (g(n)), where G = H). The Se-C(i) bond of the p-YC(6)H(4)Se group in 8-G-1-(p-YC(6)H(4)Se)C(10)H(6) is almost perpendicular to the naphthyl plane in type A, and it is located on the plane in type B. The chlorine and bromine substitution at the 8-position in 1 and 2 dramatically changes the type A structure of 4 (g(n)) to type B. The nonbonded G- - -Se-C 3c-4e type interaction must contribute to stabilize the type B structure. The type B structure in 1 and 2 should also be more stabilized than the same structure in 4 by the 3c-4e type interaction: The structure of 4b is type B in the crystals and type B would be more stable for 4c and might be for 4a in solutions. Ab initio MO calculations are performed on 8-G-1-(p-YC(6)H(4)Se)C(10)H(6), 8-G-C(10)H(6)SeH-1, and models HG- - -SeH(2), where G = Cl, Br, and F, to clarify the reason for the dramatic change in the structures. The type B structure is optimized to be more stable than the type A for all species examined, which supports the observations. The energy differences between type B and type A are larger for the models than for the naphthalenes. While the superiority of the type B for the former is Br > Cl > F, that of the latter is Br approximately Cl >/= F. These results show that the main factor of the structural change from type A to type B is the nonbonded G- - -Se-C 3c-4e interaction. The electronic effect of halogens through the naphthalene pi-framework would also contribute to some extent, although the direct comparison of the evaluated values between the naphthalene systems and the models is not so easy. Factors to stabilize the two structures of 1, 2, 4, and 8-(MeSe)-1-(p-YC(6)H(4)Se)C(10)H(6) are reexamined from a viewpoint of the nonbonded G- - -Se-C 3c-4e interaction (G dependence), together with the electronic effect of Y (Y dependence).  相似文献   

20.
A new polymorph of SrS(3) was obtained by a reaction of SrS and S with an atomic ratio of Sr:S = 1:5 under a pressure of 5 GPa at 1200 degrees C. It crystallized in a tetragonal unit cell with a = 6.708(1) A, c = 3.942(1) A, and V = 177.36(6) A(3). It was isotypic with BaS(3), and contained S3(2-) polysulfide ions. The product obtained from the high-pressure synthesis contained an amorphous component. It was highly deliquescent and formed a yellowish solution. A new layered polysulfide, Sr(2)(OH)(2)S(4).10H(2)O, crystallized in the solution. The sulfide belonged to a triclinic space group of P (No. 2) with lattice constants of a = 5.9107(5) A, b = 7.8682(6) A, c = 9.4134(6) A, alpha = 75.639(6) degrees, beta = 73.824(3) degrees, gamma = 71.639(3) degrees, V = 392.83(5) A(3), and Z = 1. Each Sr ion was coordinated with one OH ligand and eight H(2)O ligands. Six H(2)O ligands out of the eight were bridging ligands to form two-dimensional [Sr(2)(OH)(2)(H(2)O)(10)(2+)]( infinity ) cationic layers, between which S4(2-) tetrapolysulfide ions were situated. The S4(2-) anion had a coplanar configuration with a dihedral angle of 180.0 degrees. The stability of S4(2-) anions having different conformations was discussed from a viewpoint of ab initio MO calculations on changing the dihedral angles of S4(2-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号