首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
T-cells play critical roles in various immune reactions, and genetically engineered T-cells have attracted attention for the treatment of cancer and autoimmune diseases. Previously, it is shown that a polyamidoamine dendrimer of generation 4 (G4), modified with 1,2-cyclohexanedicarboxylic anhydride (CHex) and phenylalanine (Phe) (G4-CHex-Phe), is useful for delivery into T-cells and their subsets. In this study, an efficient non-viral gene delivery system is constructed using this dendrimer. Ternary complexes are prepared using different ratios of plasmid DNA, Lipofectamine, and G4-CHex-Phe. A carboxy-terminal dendrimer lacking Phe (G3.5) is used for comparison. These complexes are characterized using agarose gel electrophoresis, dynamic light scattering, and ζpotential measurements. In Jurkat cells, the ternary complex with G4-CHex-Phe at a P/COOH ratio of 1/5 shows higher transfection activity than other complexes, such as binary and ternary complexes with G3.5, without any significant cytotoxicity. The transfection efficiency of the G4-CHex-Phe ternary complexes decreases considerably in the presence of free G4-CHex-Phe and upon altering the complex preparation method. These results suggest that G4-CHex-Phe promotes the cellular internalization of the complexes, which is useful for gene delivery into T-cells.  相似文献   

2.
The EPTPA5) chelate, which ensures fast water exchange in GdIII complexes, has been coupled to three different generations (5, 7, and 9) of polyamidoamine (PAMAM) dendrimers through benzylthiourea linkages (H5EPTPA = ethylenepropylenetriamine-N,N,N',N',N'-pentaacetic acid). The proton relaxivities measured at pH 7.4 for the dendrimer complexes G5-(GdEPTPA)111, G7-(GdEPTPA)253 and G9-(GdEPTPA)1157 decrease with increasing temperature, indicating that, for the first time for dendrimers, slow water exchange does not limit relaxivity. At a given field and temperature, the relaxivity increases from G5 to G7, and then slightly decreases for G9 (r1 = 20.5, 28.3 and 27.9 mM(-1) s(-1), respectively, at 37 degrees C, 30 MHz). The relaxivities show a strong and reversible pH dependency for all three dendrimer complexes. This originates from the pH-dependent rotational dynamics of the dendrimer skeleton, which was evidenced by a combined variable-temperature and multiple-field 17O NMR and 1H relaxivity study performed at pH 6.0 and 9.9 on G5-(GdEPTPA)111. The longitudinal 17O and 1H relaxation rates of the dendrimeric complex are strongly pH-dependent, whereas they are not for the [Gd(EPTPA)(H2O)]2- monomer chelate. The longitudinal 17O and 1H relaxation rates have been analysed by the Lipari-Szabo spectral density functions and correlation times have been calculated for the global motion of the entire macromolecule (tau(gO)) and the local motion of the GdIII chelates on the surface (tau(lO)), correlated by means of an order parameter S2. The dendrimer complex G5-(GdEPTPA)111 has a considerably higher tau(gO) under acidic than under basic conditions (tau(298)gO = 4040 ps and 2950 ps, respectively), while local motions are less influenced by pH (tau(298)lO = 150 and 125 ps). The order parameter, characterizing the rigidity of the macromolecule, is also higher at pH 6.0 than at pH 9.9 (S2 = 0.43 vs 0.36, respectively). The pH dependence of the global correlation time can be related to the protonation of the tertiary amine groups in the PAMAM skeleton, which leads to an expanded and more rigid dendrimeric structure at lower pH. The increase of tau(gO) with decreasing pH is responsible for the pH dependent proton relaxivities. The water exchange rate on G5-(GdEPTPA)111(k(298)ex = 150 x 10(6) s(-1)) shows no significant pH dependency and is similar to the one measured for the monomer [Gd(EPTPA)(H2O)]2-. The proton relaxivity of G5-(GdEPTPA)111 is mainly limited by the important flexibility of the dendrimer structure, and to a small extent, by a faster than optimal water exchange rate.  相似文献   

3.
For efficient receptor-mediated gene transfection, a new and simple formulation method based on using PEI and FOLPEGPLL conjugate was presented. Luciferase plasmid DNA and PEI were complexed to form slightly positive-charged nanoparticles, onto which FOL-PEG-PLL conjugate was surface coated. With increasing the coating amount of FOL-PEG-PLL conjugate, the FOL-PEG-PLL/PEI/DNA complexes exhibited increased surface zeta-potential values with concomitantly increased diameters, indicating that the PLL part was physically anchored on the surface of preformed PEI/DNA complexes with FOL moieties being exposed on the outside. The formulated complexes exhibited a considerably higher transfection efficiency against FOL receptor over-expressing KB cells than FOL receptor deficient A549 cells. This was caused by an enhanced cellular uptake of the resultant complexes via a receptor-mediated endocytosis process. The formulated complexes showed a higher gene expression level, even in the presence of serum, than the PEI/DNA or Lipofectamine/DNA complexes. This was attributed to the PEG chains present on the surface of complexes that could work as a protective shield layer against aggregation caused by non-specific protein adsorption. The FOL-PEG-PLL/PEI/DNA complexes also demonstrated better cell viability than the PEI/DNA complexes.(1)H NMR spectrum of FOL-PEG-PLL conjugate.  相似文献   

4.
Pt/gamma-Al2O3 catalysts were prepared using hydroxyl-terminated generation four (G4OH) PAMAM dendrimers as the templating agents and the various steps of the preparation process were monitored by extended X-ray absorption fine structure (EXAFS) spectroscopy. The EXAFS results indicate that, upon hydrolysis, chlorine ligands in the H(2)PtCl(6) and K(2)PtCl(4) precursors were partially replaced by aquo ligands to form [PtCl3(H2O)3]+ and [PtCl2(H2O)2] species, respectively. The results further suggest that, after interaction of such species with the dendrimer molecules, chlorine ligands from the first coordination shell of Pt were replaced by nitrogen atoms from the dendrimer interior, indicating that complexation took place. This process was accompanied by a substantial transfer of electron density from the dendrimer to platinum, indicating that the dendrimer plays the role of a ligand. Following treatment of the H(2)PtCl(6)/G4OH and K(2)PtCl(4)/G4OH complexes with NaBH4, no substantial changes were observed in the electronic or coordination environment of platinum, indicating that metal nanoparticles were not formed during this step under our experimental conditions. However, when the reduction treatment was performed with H2, the formation of extremely small platinum clusters, incorporating no more than four Pt atoms was observed. The nuclearity of these clusters depends on the length of the hydrogen treatment. These Pt species remained strongly bonded to the dendrimer. Formation of larger platinum nanoparticles, with an average diameter of approximately 10 A, was finally observed after the deposition and drying of the H(2)PtCl(6)/G4OH nanocomposites on a gamma-Al(2)O(3) surface, suggesting that the formation of such nanoparticles may be related to the collapse of the dendrimer structure. The platinum nanoparticles formed appear to have high mobility because subsequent thermal treatment in O2/H2, used to remove the dendrimer component, led to further sintering.  相似文献   

5.
细胞膜仿生修饰树枝状聚酰胺-胺的研究   总被引:1,自引:1,他引:1  
贾兰  徐建平  计剑  沈家骢 《高分子学报》2008,(11):1108-1112
利用2-丙烯酰氧基乙基磷酸胆碱的双键与树枝状聚酰胺-胺表面的氨基进行Michael加成反应,实现树枝状聚酰胺-胺表面的磷酸胆碱仿生修饰,修饰过程用FTIR、1H-NMR进行了表征.体外细胞活性测定和细胞形貌观察证实磷酸胆碱仿生修饰有效地改善了聚酰胺-胺树枝状聚合物的生物相容性;修饰后的聚酰胺-胺树枝状聚合物表面剩余的氨基仍然可以有效的与DNA复合,有可能作为一种潜在的基因载体得到广泛应用.  相似文献   

6.
Dendritic poly(amidoamine)s (PAMAM)s were introduced into the side chains of disulfide‐containing poly(amidoamine)s via repetitive Michael addition and amidation. The bioreducible poly(amidoamine)s grafted with dendritic polyamidoamines showed high buffer capacity, low cytotoxicity and strong DNA binding ability at low N/P ratio. They were able to condense DNA into small sized polycation/DNA complexes, which degraded and released the incorporated DNA under reductive conditions. In comparison to the original disulfide‐containing poly(amidoamine) with aminoethyl side chain, the grafting of the bioreducible poly(amidoamine) with dendrimer greatly improved the transfection efficiencies of 293T and HeLa cells with foreign DNA at various N/P ratios. The structure–gene delivery property relations of dendrimer‐grafted polycations will provide valuable insight into the design of highly efficient and less toxic polycationic gene carriers.

  相似文献   


7.
Three kinds of head‐tail‐type block copolymers composed of polyamidoamine (PAMAM) dendron heads and poly(L ‐lysine) (PLL) tail blocks (PAMAM dendron‐PLL), having PAMAM dendrons with different generations (G2.5‐PLL, G3.5‐PLL and G4.5‐PLL) were synthesized. Some of the dendron heads were located at polyplex surface, and G2.5‐PLL and G3.5‐PLL could form small polyplexes (less than 150 nm in size). G2.5‐PLL and G3.5‐PLL polyplexes were taken up into the cells more effectively. PAMAM dendron‐PLL that had a larger dendron head could show a more‐effective buffering effect. The in vitro performance of the PAMAM dendron‐PLL polyplexes was controlled by the balance of cellular uptake and endosomal escape by a buffering effect.

  相似文献   


8.
Poly(vinyl alcohol) (PVA) and polyamidoamine (PAMAM) dendrimers are water-soluble, biocompatible and biodegradable polymers, which have been widely applied in biomedical fields. In this paper, novel physically cross-linked hydrogels composed of PVA and amine-terminated PAMAM dendrimer G6-NH(2) were prepared by cyclic freezing/thawing treatment of aqueous solutions containing PVA and G6-NH(2). The FT-IR analysis and elemental analysis indicated that PAMAM dendrimer G6-NH(2) was successfully introduced into the formed hydrogels, possibly via hydrogen bonds among hydroxyl groups, amide groups and amino groups in PVA and PAMAM dendrimer in the process of freezing-thawing cycle. Compared with physically cross-linked PVA hydrogel, PVA/G6-NH(2) hydrogels show higher swelling ratios and faster re-swelling rate due to the higher hydrophilicity of PAMAM dendrimer G6-NH(2). Higher contents of G6-NH(2) in PVA/G6-NH(2) hydrogels resulted in higher swelling ratios and faster re-swelling rates. With increasing freezing/thawing cyclic times, the swelling ratios and re-swelling rates of PVA/G6-NH(2) hydrogels decreased, which is similar to that of physically cross-linked PVA hydrogel. Combining the special host property of polyamidoamine dendrimer, these novel physically cross-linked hydrogels are expected to have potential use in drug delivery, including improving drug-loading amounts in hydrogels and prolonging drug release time. Swelling ratios of physically cross-linked PVA/G6-NH(2)-50 hydrogels prepared by three, six, nine freezing/thawing cycles. The swelling equilibrium experiments were carried out in distilled water at 25 degrees C.  相似文献   

9.
CdS半导体纳米簇具有独特的光、电性能, 如何制备均匀分散的、能够稳定存在的CdS纳米簇是目前的研究热点之一. 以聚酰胺-胺(PAMAM)树形分子为模板, 原位合成了CdS纳米簇. 首先用UV-Vis分光光度法研究了与树形分子的配位机理, 得出G4.5和G5.0的平均饱和配位数分别为16和34, 并发现在G4.5PAMAM树形分子中Cd2+主要与最外层叔胺基配位, 在G5.0PAMAM树形分子中Cd2+主要与最外层伯胺基配位. 酯端基的G4.5的模板作用要明显优于胺端基的G5.0. 通过改变Cd2+与G4.5树形分子的摩尔比可以得到不同粒径的CdS纳米簇. 溶液的pH值对CdS纳米簇影响很大, pH在7.0左右制备的CdS纳米簇粒径小而均匀, 且溶液稳定性高. 用UV-Vis分光光度计和TEM对CdS纳米簇的大小和形貌进行了表征. 结果表明TEM观测CdS纳米簇的粒径要大于用Brus公式的估算值.  相似文献   

10.
Dendritic pillar[5]arene derivatives have been efficiently prepared by grafting dendrons with peripheral Boc‐protected amine subunits onto a preconstructed pillar[5]arene scaffold. Upon cleavage of the Boc‐protected groups, water‐soluble pillar[5]arene derivatives with 20 ( 13 ) and 40 ( 14 ) peripheral ammonium groups have been obtained. The capability of these compounds to form stable nanoparticles with plasmid DNA has been demonstrated by gel electrophoresis, transmission electron microscopy (TEM), and dynamic light scattering (DLS) investigations. Transfection efficiencies of the self‐assembled 13 /pCMV‐Luc and 14 /pCMV‐Luc polyplexes have been evaluated in vitro with HeLa cells. The transfection efficiencies found for both compounds are good, and pillar[5]arenes 13 and 14 show very low toxicity if any.  相似文献   

11.
Platinum-based antitumour drug ZD0473 was designed to reduce the cisplatin resistance to the tumor cells. In this paper, the mixed method of molecular mechanics and quantum chemistry, HF/lanl2dz// MM/uff and B3LYP/lanl2dz//6-31G*, are used to investigate the differences between four types of GG, 3′AG5′, 3′GA5′, and AA complexes, which are formed from four discrete DNA fragments recognized by ZD0473 and cisplatin. The results show that the binding interaction of both ZD0473 and cisplatin drugs with the GG base pair is much stronger than with other base pairs, namely the recognition capability of such drugs to the GG base pair is more considerable. Moreover, the interaction of four complexes of ZD0473 with DNA fragments is stronger than that of cisplatin with corresponding DNA fragments, which indicates the stronger binding capability of ZD0473 with DNA fragments and high antitumour activity of ZD0473. The main reason for easier forming of 3′GA5′ complex than the 3′AG5′ one is that the drug molecule prefers to bind with a single G base to form a monoligand compound firstly; then the con- figuration transformation from such monoligand compound to the bi-ligand one is limited.  相似文献   

12.
Complexation of Zn(II) ions by cyclam cored dendrimers appended with four (G0), eight (G1) and 16 naphthyl chromophores (G2) at the periphery have been investigated in CH?CN-CH?Cl? 1?:?1 (v/v) solution by absorption and emission, ESI-mass and 1H NMR spectroscopy. The results obtained can be interpreted by the formation of complexes of 2?:?1 dendrimer to metal stoichiometry, at low metal ion concentration, and 1?:?1 complexes upon further addition of Zn(II) ions, for all the dendrimer generations. Upon addition of a molecular clip C2? consisting of two anthracene sidewalls bridged by a benzene group with two sulfate substituents in the para positions, heteroleptic complexes of general formula [GnZnC] are formed. Interestingly, in these complexes, a very efficient quenching (practically 100%) of the dendrimer naphthyl luminescence and sensitization (ca. 90%) of the clip anthracene emission take place. The complex [G2ZnC] exhibits a very high molar absorption coefficient in the UV spectral region owing to the 16 naphthyl chromophores of the dendrimer and the two anthracene units of the clip (ε = 1.7 × 10? M?1 cm?1 at 263 nm). Furthermore, the excitation energy absorbed by the naphthyl chromophores is efficiently funneled to the two anthracene units of the clip, which emits in the blue spectral region.  相似文献   

13.
A new derivative of polyamidoamine and polyethylenimine, G2.5‐PEI 423 or G1.5‐PEI 423, is prepared by an amidation reaction of PAMAM G2.5 or PAMAM G1.5 using PEI 423. The polycations show a great ability to combine with pDNA to form complexes, which protect the pDNA from nuclease degradation. The polymers display stronger buffer capacity and lower cytotoxicity. The complexes have particle sizes of 120–180 nm and zeta potentials of 20–40 mV. The G2.5‐PEI 423 complexes display much higher transfection efficiencies than PAMAM G5 and Lipo‐2k, and the G1.5‐PEI 423 complexes display higher transfection efficiencies than PAMAM G4 and PEI‐25k. The complexes possess better serum‐resistant capacity. The G2.5‐PEI 423 has a great potential to be used as a serum‐resistant gene vector.

  相似文献   


14.
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to probe the binding of silver ions and reduced silver species with polyamidoamine generation 1 amine-terminated (PAMAMG1NH2) and generation 2 hydroxyl-terminated (PAMAMG2OH) dendrimers. At Ag(+)/PAMAMG2OH molar ratios of 1, 2:1 and low abundance 3:1 complexes emerge. Similar results were observed for PAMAMG1NH2. The collisional activated dissociation (CAD) patterns of the dendrimer ions are characterized by losses of amidoamine branches resulting largely from hydrogen migration and cleavage reactions. Ag+/dendrimer complexes are characterized by the loss of a dendrimer branch from the complex, with the silver ion remaining bound to a dendrimer fragment. When the Ag+-bound dendrimer complexes are reduced by hydrazine, low abundance complexes, whose m/z values are consistent with ones containing zerovalent silver species, are observed in the mass spectra. Complexes with three silver atoms are observed in the spectrum containing PAMAMG1NH2, and complexes with four and five silver atoms are observed with PAMAMG2OH. The CAD fragmentation patterns of the complexes formed after the silver reduction are different than those observed for complexes containing one silver ion and are characterized by the ejection of all silver species, possibly as a cluster, leaving the intact dendrimer ion. Experiments with Cu+, Cu2+, and Pt2+ binding to PAMAMG2OH were also done, but reduced metal clusters were not observed in the mass spectra after the addition of hydrazine.  相似文献   

15.
Newly designed poly(amido amine) dendrimers, which have an azacrown core, hexyl spacers, and methyl ester terminals (aza-C6-PAMAM dendrimer), were spread at the air-water and air-silver nanoparticle suspension interfaces, and their film structures were examined by surface pressure-area (pi-A) and surface potential-area (DeltaV-A) isotherms and epifluorescence microscopy. It was revealed that generation (G) 1.5 aza-C6-PAMAM dendrimer on a water subphase formed homogeneous film with face-on configuration, and this configuration was maintained during compression. On the other hand, a G2.5 dendrimer film on the air-water interface took initially homogeneous and face-on configuration that was followed by the conformational change during compression. Using a silver nanoparticle suspension as subphase, G1.5 film was significantly reinforced, and the partial collapse (cracks) in the film appeared as network texture. For a G2.5 dendrimer film, the pi-A and DeltaV-A isotherm properties were similar to that on the water subphase except for the collapsed film; small spots instead of cracks were formed under the film after collapse. These effects of the silver nanoparticle may be due to the formation of a dendrimer/silver nanoparticle composite. The formation process of the nanocomposite film was verified by UV-vis spectroscopy. For the G1.5 dendrimer, silver clusters and nanoparticles adsorbed to the dendrimer film after spreading and formed a small amount of aggregates. During compression, the aggregation proceeded even at low surface pressure. For the G2.5 dendrimer, a dendrimer/nanoparticle composite was also formed after spreading. However, with the initial compression, the absorption bands of clusters, nanoparticles, and aggregate increased together. Upon further compression, while the bands of cluster and nanoparticles decreased, the bands of aggregate still increased. These results suggest that the G2.5 dendrimer covered the cluster and nanoparticles more efficiently than the G1.5 dendrimer did because of the larger molecular size.  相似文献   

16.
Self‐assembling systems based on ionic complexes of DNA fragments (36 base pairs), bcl‐2 antisense oligonucleotides (octadecamer), oligophosphates (25 phosphate groups) or acrylic oligomers (18 groups of phosphonic acid) with poly(L ‐lysine) (PLL) ( = 130 000 and 88 000) grafted with short poly[N‐(2‐hydroxypropyl)methacrylamide] (PHPMA) chains ( = 4 300 or 8 600) were studied by static and dynamic light scattering methods as systems suitable for gene therapy applications. The graft copolymers (GPLLs) with shorter PHPMA grafts ( = 4 300) provide polyelectrolyte complexes (PECs) with smaller and RH than the corresponding GPLLs with longer grafts ( = 8 600) and the same content of PLL. The lowest aggregation number of 2 was observed for PECs prepared from the GPLL with short grafts and 40 wt.‐% of PLL. The complexes of oligonucleotides and DNA fragments with GPLLs showed quite similar behavior to that with oligophosphates and acrylic oligomer. The complexes prepared from GPLLs containing 40 wt.‐% of PLL and at excess of oligophosphate were stable for at least 48 h under physiological conditions (0.15 M NaCl) and in bovine serum albumin solutions (1 mg · mL?1). Additionally, polyanion exchange reactions of the PECs in contact with poly(styrenesulfonate) and DNA were studied in 0.15 M NaCl solutions. The oligophosphates in complexes were at least partially substituted with high‐molecular‐weight polyanions. The structure of the initial PECs dominated the PEC structure after the exchange reaction.

The dependence of the molecular weight (a) and the hydrodynamic radius RH (b) of complexes of the oligophosphate (OPP) and four graft copolymers (GPLLi, i = 0–3) on the mixing ratio X.  相似文献   


17.
Gd(III)-containing dendrimers are promising contrast agents for magnetic resonance imaging (MRI). An important issue in the effectiveness and toxicity of a Gd(III) based MRI contrast agent is knowledge of the relative locations and concentrations of Gd(III) in dendrimer drug delivery hosts. In order to provide experimental information on this issue, we have investigated the electron paramagnetic resonance (EPR) of a stable Gd(III) complex with diethylenetriaminepentaacetic acid (DTPA) in various polyammidoamine (PAMAM) dendrimers as a function of dendrimer generation (G2, G4, and G6), dendrimer core (ethylenediamine = EDA, and cystamine = cys), and dendrimer surface functionality (NH(2), 5-oxo-3-pyrrolidinecarboxylic acid methyl ester = pyr, and tris(hydroxymethyl) methylamine = tris). The dendrimer systems were investigated in the presence and absence of paramagnetic probes, that is, Cu(II) and nitroxide radicals (4-(trimethylammonium and dodecyl-dimethylammonium) 2,2,6,6-tetramethylpiperidine 1-oxyl bromide = CAT1 and CAT12, respectively). The analysis of the EPR spectra revealed anisotropic locations of Gd-DTPA inside the dendrimer. Computer analysis of the EPR spectra of the probes identified the interactions of the Gd-dendrimers with ions and organic molecules. The interaction between the probes and the dendrimer internal and external surface depends on the type of core, the composition of the external surface and the generation of the dendrimer. The negatively charged Gd-DTPA complex attracts the positively charged species and this provokes spin-spin interactions between Gd and the probes, which increases with a decrease in generation, mainly from G6 to G4, and with an increase in both the Gd-dendrimer concentration and the probe concentration. The cys core increases the internal volume and decreases the packing of the branches.  相似文献   

18.
聚乙烯醇(PVA)是一种水溶性的生物相容性好并可降解的合成高分子,PVA通过化学或物理方法交联可以形成水凝胶,PVA与聚丙烯酸(PAA)、聚N-异丙基丙烯酰胺(PNIPA)、聚乙烯基吡咯烷酮(PVP)及壳聚糖形成互穿网络型水凝胶,改善凝胶的性质,另一方面,树型高分子是一  相似文献   

19.
Dendrimers are regularly branched molecular trees which are notoriously difficult to crystallize. Herein we report the crystal structure of a C‐fucosylated second generation peptide dendrimer as complex with lectin LecB in which the only dendrimer‐lectin contact is the LecB bound glycoside (PDB 6S5S). In contrast to a previously reported crystal structure of a first‐generation peptide dendrimer as LecB complex in which the dendrimer formed trimers connected by intermolecular β‐sheets (PDB 5D2A), the present structure features a globular monomeric state held together by intramolecular backbone hydrogen bonds and assembled into a non‐covalent dimer stabilized by hydrophobic contacts between leucine side‐chains and proline‐phenylalanine CH‐π stacking interactions. Molecular dynamics and circular dichroism studies suggest that this crystal structure resembles the structure of the peptide dendrimer in solution. Structures of a partially resolved dendrimer (PDB 6S5R) and of C‐fucosylated disulfide bridged peptide dimers connecting different LecB tetramers are also reported (PDB 6S7G, PDB 6S5P).  相似文献   

20.
Density functional calculations (DFT) of a structure of dendrimer G1-4S-Bu (Si5C20H132S4) and its complexes with one, two, three, and four molecules of CuCl2 have been carried out for the first time. The geometric structures of the complexes and spin-density distribution have been determined. For the studied complexes the states with maximum multiplicity are the most favorable. The interaction energies of the dendrimer G1-4S-Bu with CuCl2 molecules have been calculated. It has been demonstrated that the formation of complexes with one or two molecules of CuCl2 is the most favorable under standard conditions, which is consistent with the experimental data. Paramagnetic centers exist in all four studied complexes, and the unpaired electron is «localized» in four atoms: Cu, S, Cl, and Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号