首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crystal and molecular structures of the title compound have been determined from a three-dimensional X-ray analysis using diffractometer data. The crystals are triclinic, space group P1, with Z = 2 in a unit cell of dimensions a = 11.640(1), b = 10.9139(8), c = 16.587(2) Å, α = 87.983(5), β = 99.670(6), λ = 62.250(5)°. Full matrix least squares refinement has given a final R-factor of 0.043 for 2726 reflections for which I > 2σ(I).The crystal structure consists of discrete molecules of neutral complex together with water molecules which are hydrogen bonded into pairs [O ? O separation 2.60 Å]. 0The (H20)2 units do not hydrogen bond to any other atoms. The ruthenium coordination is octahedral with trans carbene and isocyanide, cis iodides, and cis phosphine and carbonyl ligands. The Ru-donor distances are 2.776(2) [I trans to -PPh3], 2.782(1) [I trans to -CO], 2.342(4) [PPh3], 1.855(15) [CO], 2.046(15) [C(carbene)], and 1.998(16) Å [C(isocyanide)]. The bond lengths are discussed in terms of the trans effects of the ligands. The C(carbene)-N distance is 1.26(2) Å and the Ru—C(carbene)—N angle is 141.5(5)°.  相似文献   

2.
According to an X-ray investigation (?120°C, λ(Mo-Kα), 6815 reflections, space group P21/c, Z = 4, R = 0.068), the cation of the tetraaurated ammonium salt [(Ph3PAu)4N]+ BF4? can be considered as a distorted tetrahedral Au4(N) cluster built up of four linearly coordinated Au atoms with an interstitial N atom (AuAu 3.012–3.504 Å, AuN 1.93–2.10 Å). On the basis of the structural data on 14-, 16- and 18-electron mononuclear post-transition metal complexes, the magic number of 18 skeletal electrons can be suggested for [AunLn ? 1]m+ clusters with an interstitial Au atom and a quasi-spherical peripheral Aun ? 1 polyhedron.  相似文献   

3.
The syntheses and the X-ray structures of the tetranuclear gold(I) benzamidinate, Au4[PhNC(Ph)NPh]4, and the tetranuclear gold(I) acetamidinate, Au4[PhNC(CH3)NPh]4, clusters are reported. The clusters are produced by the reaction of the sodium salt of an amidine ligand with the gold precursor Au(THT)Cl in a (1:1) stoichiometry. The average Au...Au distance between adjacent Au(I) atoms is ∼2.9 ?, typical of compounds having an aurophilic interaction. The four gold atoms are arranged in a square (Au...Au...Au... = 88–91°) in the acetamidinate and in a distorted square (Au...Au...Au... = 82–97°) in the benzamidinate derivative. Electrochemical oxidation of the tetranuclear complex Au4[PhNC(Ph)NPh]4 show three reversible waves at 0.87, 1.19, 1.42 V vs. Ag/AgCl at a scan rate of 100 mV/s in CH2Cl2 similar to the three reversible waves seen before from the tetranuclear complexes Au4[ArNC(H)NAr]4, Ar = C6H4-4-OMe, Ar = C6H4-4-Me, and Ar = C6H3-3,5-Cl. A summary of the chemistry of the tetranuclear Au(I) amidinate complexes Au4[ArNC(H)NAr]4, Ar = C6H4-4-OMe, C6H3-3,5-Cl, C6H4-4-Me, C6H4-3-CF3, C6F5, C10H7 also is presented. The tetranuclear clusters Au4[ArNC(H)NAr]4, Ar = C6H4-4-OMe, Ar = C6H4-3-CF3, Ar = C6H4-4-Me and Ar = C6H4-3,5-Cl are the first tetranuclear gold(I) cluster species from group 11 elements to show fluorescence at room temperature. The lifetimes of the naphthyl and trifluoromethylphenyl complexes are in the millisecond range indicating phosphorescent processes. Recently it has been shown that Au4[ArNC(H)NAr]4 are very effective catalysts upon calcination for room temperature CO oxidation. Congratulations to Dieter Fenske, a superb synthetic chemist with exceptional talents in cluster chemistry, on the occasion of his 65th birthday.  相似文献   

4.
The complex η5-[Pd(CH2CHCMeCH2CH2CHCMe2)-(MeCN)](BF4), a model for a key intermediate in diene polymerization, crystallizes in the monoclinic space group P21/c, a 11.362(2), b 13.655(4), c 10.046(2) Å, β 134.80(1)°. The structure was solved by conventional Patterson and Fourier syntheses and refined by full matrix least squares techniques to a final discrepancy index R = 0.058 for 1710 independent reflections. The palladium and nitrogen atoms, the center of gravity of the allyl triangle, and the middle point of the coordinated double bond are coplanar. The side chain of the organic moiety is located in the syn position with respect to the η3-allyl group. The orientation of the coordinated double bond, which forms an angle of 26° with the coordination plane, is novel for palladium(II) complexes.  相似文献   

5.
A new series of cationic areneiridium(I) complexes of formula [Ir(barrelene)(arene)]+ or [Ir(barrelene)(PhNRPh)]+ (R= Ph or H) have been synthesized from neutral iridium complexes of the type [IrY(barrelene)]x (barrelene = Me3TFB, Y = Cl or OMe (x = 2), Y = acac (x = 1); barrelene = TFB, Y = OMe (x = 2), Y = acac (x = 1)). The crystal structures of [Ir(Me3TFB)(1,4-C6H4Me2)]ClO4 and [Ir(TFB)(PhNPh2)]BF4·CH2Cl2 have been determined by X-ray diffraction. They crystallize in the space groups Pbca and Pna21 respectively with lattice constants of 17.6947(11), 15.8072(10), 16.0019(11) Å and 9.8059(2), 20.8097(9), 14.3367(4) Å. Final R factors were 0.063 and 0.042 for the observed data. Both complexes show a staggered arrangement between the arene and the TFB moieties and deviation from planarity of the coordinated arene ligands. In the second complex the IrC and NC distances, the CNC angle, the type of arene puckering, and the spectroscopic data indicate a distortion of the coordinated arene towards a η5-coordinated iminocyclohexadienyl form.  相似文献   

6.
The crystal structure of (η5-C5Me5)(η3-MeHCCHCHMe)RhCl at ?120°C was determined (R = 0.041 for 1790 reflections). The molecule has approximate mirror symmetry. The cyclopentadienyl ring is bent by 6.8°, acquiring an envelope-like conformation, and its bonding with Rh is of a partially-localized η41 type with RhC(“π-diolefin”) of 2.206–2.235 Å and RhC(“σ-bonded”) of 2.151 Å. The syn-arrangement of the Me groups in the π-allyl ligand, assigned by NMR spectra, is confirmed.  相似文献   

7.
Bis(NHC)ruthenium(II)–porphyrin complexes were designed, synthesized, and characterized. Owing to the strong donor strength of axial NHC ligands in stabilizing the trans M?CRR′/M?NR moiety, these complexes showed unprecedently high catalytic activity towards alkene cyclopropanation, carbene C? H, N? H, S? H, and O? H insertion, alkene aziridination, and nitrene C? H insertion with turnover frequencies up to 1950 min?1. The use of chiral [Ru(D4‐Por)(BIMe)2] ( 1 g ) as a catalyst led to highly enantioselective carbene/nitrene transfer and insertion reactions with up to 98 % ee. Carbene modification of the N terminus of peptides at 37 °C was possible. DFT calculations revealed that the trans axial NHC ligand facilitates the decomposition of diazo compounds by stabilizing the metal–carbene reaction intermediate.  相似文献   

8.
Arylmercury compounds of the type Ar2Hg and ArHgX (X = Cl, OAc) have been synthesized and characterized by 1H and 13C NMR spectroscopy; the Ar group was either 2-Me2NCH2C6H4 or (S)-2-Me2NCH(Me)C6H4, both of which contain N-donor ligands. The observation of anisochronous NMe resonances in (S)-2-Me2NCH(Me)C6H4HgX (X = Cl, OAc) at low temperature indicates that in solution the mercury centre is three-coordinate as a result of stable intramolecular HgN coordination  相似文献   

9.
The syntheses and reactivity of the two N‐heterocyclic carbene (NHC)→ silylene complexes 2 and 4 have been investigated. The latter are easily accessible by reaction of the zwitterionic, N‐heterocyclic silylene LSi: 1 [L=Ar‐N‐C(=CH2)CH?C(Me)‐N‐Ar, Ar=2,6‐iPr2C6H3] with 1,3,4,5‐tetramethylimidazol‐2‐ylidene and 1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene, respectively. While compound 2 undergoes facile rearrangement above ?20 °C to give the unsymmetrical N‐heterocyclic silylcarbene 3 , the derivative 4 remains unchanged even after boiling in benzene. The remarkable reactivity of 3 and 4 towards cyclohexylisocyanide has been examined which leads in a unique series of C? H, Si? H, and C? N bond activations to the new triaminosilanes 5 and 6 , respectively. The novel compounds 3 , 4 , 5 , and 6 were fully characterized by 1H, 13C, and 29Si NMR spectroscopy, EI‐MS, elemental analysis, and single‐crystal X‐ray diffraction.  相似文献   

10.
Cationic alkoxycarbene complexes of platinum(II) have been isolated in the reactions of trans-[(PR3)2PtX(R′OH)]PF6 (X  H or Me; R′  Me or Et) with Me3SiCCR′′ (R′′  H, Me or SiMe3). In these reactions cleavage of the carbon-silicon bond by the nucleophilic attack of alcohol has been observed. These carbene complexes have been characterized by elemental analyses and by IR, 1H and 13C NMR spectral data. 13C NMR chemical shift data for carbene carbon atoms suggest that the carbene carbon may be very positively charged.  相似文献   

11.
A summary of the chemistry of the tetranuclear Au(I) amidinate complexes is presented. Tetranuclear Au(I) amidinate clusters are produced by the reaction of the sodium salt of a amidine ligand with the gold precursor Au(THT)Cl in a (1:1) stoichiometry. The structures of the tetranuclear Au4[ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, C6H3‐3,5‐Cl, C6H4‐4‐Me, C6H4‐3‐CF3, C6F5, C10H7 and the tetranuclear Au4[(PhNC(Ph)NPh]4 and Au4[PhNC(CH3)NPh]4 have been characterized by X‐ray crystallography. The average Au···Au distance between adjacent Au(I) atoms is ?3.0 Å, typical of compounds having an aurophilic interaction. The four gold atoms are located at the corner of a rhomboid with the amidinate ligands bridged above and below the near plane of the four Au(I) atoms. The angles at Au···Au···Au in the cyclic units are between 70° and 116°. The tetranuclear gold(I) amidinate clusters each show different luminescence behavior. The tetranuclear clusters Au4[(ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, Ar = C6H4‐3‐CF3, Ar = C6H4‐4‐Me and Ar = C6H4‐3,5‐Cl are the first tetranuclear gold(I) cluster species from group 11 elements that show fluorescence at room temperature. The tetranuclear naphthyl derivative Ar = C10H7 is luminescent only at 77 K. The pentafluorophenyl derivative Ar = C6F5 does not show any photoluminescence in the solid state nor in the solution. The lifetimes of the naphthyl and trifluoromethylphenyl complexes are in the millisecond range indicating phosphorescent processes. Electrochemical and chemical oxidation studies of the tetranuclear Au(I) amidinate clusters are presented. The tetranuclear complexes Au4[ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, Ar = C6H4‐4‐Me, and Ar = C6H3‐3,5‐Cl, show three reversible waves at 0.75, 0.95, 1.09 V vs. Ag/AgCl at a scan rate of 500 mV/s in 0.1 M Bu4NPF6/CH2Cl2 at a Pt working electrode in CH2Cl2. Three reversible waves at 0.87, 1.19, 1.42 V vs. Ag/AgCl at a scan rate of 100 mV/s are also observed for the tetranuclear complex Au4[PhNC(Ph)NPh]4 in CH2Cl2. The pentafluorophenyl amidinate derivative, Au4[ArNC(H)NAr]4, Ar = C6F5 shows no oxidation wave below 1.8 V. Recently it has been shown that Au4[ArNC(H)NAr]4 is a very effective catalyst precursor for room temperature CO oxidation.  相似文献   

12.
The structure of (η5-trimethylsilylcyclopentadienyl)(η4-tetraphenylcyclobutadiene)cobalt, ((CH3)3SiC5H4)Co((C6H5)4C4), has been determined by single crystal X-ray diffraction techniques using three-dimensional data collected on an automatic diffractometer. The crystals are monoclinic, space group P21/c, with lattice parameters a 11.551(1), b 16.352(6), c 18.324(2) », β 122.85(1)° with four molecules in the unit cell. The structure consists of discrete molecules in which a cobalt atom is sandwiched between the η5-cyclopentadienyl (Cp) and the η4-cyclobutadience (Cb) ligands bonded to the metal in the hapto mode. The perpendicular distances Co?(Cp) and Co?(Cb) of 1.688 and 1.699 », respectively, as well as the dihedral angle of 6.9° between the two rings and the distortions of their side groups, indicate steric interactions within the molecule. The Cb ring is planar within 0.015 » and has a rectangular shape with edges of 1.480(5) and 1.463(3) ». The Cp ring, which is planar to within 0.005 », appears to be highly distorted by the trimethylsilyl group, which induces a lengthening of the C—C distances involving the substituted carbon atom (1.440(7) ») and a narrowing of the corresponding bond angle (105.3(2)°).  相似文献   

13.
The excitation-transfer reaction in thermal energy collisions of state-selected metastable Ar*(3P2) and Ar*(3P0) atoms with ground state H atoms, giving excited H*(n = 2) atoms, has been studied with the stationary afterglow technique. The rate constant for the excitation of H atoms by Ar*(3P2) has been found to be more than one order of magnitude larger than in excitation by Ar*(3P0). This difference in the reactivity of two metastable species is explained to be a consequence of the attractive nature of the D(2II) and E(2Σ+) potentials that develop from the Ar*(3P2)+H entrance channel and which give curve crossing with the B(2II) and C(2Σ+ potentials, respectively, leading to the Ar+H*(n=2) exit channel, whereas only a repulsive 4II (Ω=12) potential develops from the Ar*(3P0+H entrance channel.  相似文献   

14.
A kinetic study is reported for the reactions of secondary aromatic amines p-YC6H4NHR (Y = MeO, Me, H; R = Me, Et) with the isocyanide complexes cis-[PdCl2(p-XC6H4NC)(PPh3)] (X = Me, H, Cl) leading to the carbene derivatives cis-[PdCl2 {C(NH-p-C6H4X)NR-p-C6H4Y} (PPh3)] in 1,2-dichloroethane at 25°C. A stepwise mechanism is proposed which involves a direct nucleophilic attack of the entering amine on the isocyanide carbon followed by proton transfers to the final carbene complexes. These take place both intramolecularly in a four-membered cyclic transition state and by the agency of one further amine molecule serving as a proton acceptor-donor in a six-membered transition state. Competition experiments with primary amines and trends in rate parameters are discussed to support the mechanism.  相似文献   

15.
The title complex was obtained from the adduct of C2(CN)4 and Rh(CCPh)-(CO)(PPh3)2 by simple substitution of CO in refluxing acetonitrile. Crystals of the complex are orthorhombic, with a 10.058(2), b 20.008(4), c 21.594(5) Å, space group P212121, Z  4. The rhodium has approximate trigonal bipyramidal coordination, with apical NCMe and C2Ph ligands: RhC2Ph, 1.939(18); RhC(olefinic), 2.151, 2.157(19); RhN, 2.051(16); RhP, 2.377, 2.397(6) Å.  相似文献   

16.
Reaction of Na[AuCl4] with 2-vinylpyridine (vinpy) and 2-ethylpyridine (etpy) affords the N-bonded adducts Au(Rpy)Cl3 (R = CH2CH, vinpy; CH3CH2, etpy). Cationic adducts, [Au(vinpy)2Cl][X]2 (X = BF4, PF6) and [Au(etpy)2Cl2][BF4], were also obtained by reaction of Au(Rpy)Cl3 with Rpy (1:1) and excess NaBF4 or KPF6. Thermal activation of Au(vinpy)Cl3 in water gives the five-membered cycloaurated derivative [Au(k2-C,N-CH2CH(Cl)-C5H4N)Cl2] formally resulting through a trans nucleophilic addition of a chloride onto the CC bond. No cyclometallated derivatives are obtained by reactions of Au(etpy)Cl3. An X-ray crystal structure determination on the PPh3 derivative [Au(k2-C,N-CH2CH(Cl)-C5H4N)(PPh3)Cl][PF6] was carried out.  相似文献   

17.
Abstract

Sodium aryltellurolate (ArTe?Na+, where Ar = 4-MeOC6H4 or 4-EtOC6H4) reacts with 2- bromoethylamine resulting in the (Te, N) ligands 2-aryltelluroethylamine (ArTeCH2CH2NH2, 1) which have been characterized by elemental analyses, molecular weight, IR, 1H and 13C NMR spectra. With HgCI2, they form HgC12·1 type of complexes. IR, 1H and 13C NMR spectra of the complexes suggest that 1 ligates as a bidentate ligand with respect to Hg(II). Osmometric molecular weight measurements suggest that on heating the mercury complex HgCl2·lb (Ar = 4-EtOC6H4) in solution, relatively less soluble species result. It seems to have two Hg atoms bridged by two (Te, N) ligands. The HgC2·la (Ar = 4-MeOC6H4) has very low solubility in organic solvents and. therefore, seems to be dimerized or polymerized during the synthesis. Analysis of CH2 rocking bands in IR spectra suggests that two CH2 groups of the ligands are most probably in a gauche conformation in the mercury complexes.  相似文献   

18.
The structure of a nickel(II) complex, trans-[Ni(C6Cl5)(PMe2Ph)2{C(OMe)Me}]BF4, containing the simplest alkyl(alkoxy)carbene ligand has been determined by X-ray crystallography (R = 0.091). The geometry around the nickel atom is square-planar. The comparatively short NiC(1) bond length of 1.843(10) Å showed the presence of π-bonding in the nickel-carbene bond.  相似文献   

19.
The thermally stable arylmetal-IB-lithium compounds (2-Me2NCHZC6H4)4M2Li2 (M = Cu, Ag or Au; Z = H or Me) and (2-Me2NC6H4)4M2Li2 have been prepared by a 21 molar reaction of the aryllithium compounds with the corresponding metal-IB halide (Cu or Ag) or metal-lB halide phosphine complex (BrAuPPh3). These tetranuclear complexes were also made by an interaggregate exchange reaction of the pure arylmetal-IB clusters with the aryllithium compound.The structure of these compounds in solution consists of aryl groups bridging one metal-lB and one lithium atom of a trans M2Li2 core. The four built-in ligands coordinate to lithium resulting in two-coordination at M and four-coordination at Li. These conclusions were based on 1H and 13C NMR spectroscopic data (J(AgC(1)), J(LiC(1)) of solutions of these tetranuclear compounds as well as on the 197Au Mössbauer data of solid (2-Me2NC6H4)4Au2Li2 (IS 5.65 mm/s and QS 12.01 mm/s).The interaggregate exchange between the tetranuclear species is discussed in terms of an associative mechanism involving formation of an octanuclear intermediate in which the aryl groups can migrate via (3c-2e)edge-(2c-2e)corner(3c-2e)edge movements without M2Ar bond cleavage.Some aspects of the organic reactions in which organocuprates are involved as intermediates are discussed in terms of the novel structural information.  相似文献   

20.
The novel organosilicon, -germanium and -tin-containing carbene complexes of tungsten of the type Ph3E-CHWCl2(OBut)2 (E=Si, Ge, Sn) have been prepared by the reaction of heteroelement-containing carbene complexes of tungsten Ph3E-CW(OBut)3 (E=Si, Ge, Sn) with hydrogen chloride. The tin-containing carbene complex was identified in solution by 1H NMR spectroscopy. Silicon- and germanium-containing carbene complexes were isolated in high yields as crystalline solids and characterized by elemental analysis, IR, 1H NMR, 13C NMR and 29Si NMR spectroscopy and X-ray diffraction studies. The geometry of the W atoms in the compounds can be described as a distorted square pyramid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号