首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of the ligand-bridged derivatives [M3(CO)10{μ-(RO)2PN(Et)P(OR)2}] and [M3(CO)8{μ-(RO)2PN(Et)P(OR)2}2] (M = Ru or Os; R = Me or Pri) with halogens leads to the formation of cationic products [M3(μ-X)(CO)10{μ- (RO)2PN(Et)P(OR)2}]+ and [M3(μ-X)(CO)8{μ-(RO)2PN(Et)P(OR)2}2]+ (X = Cl, Br or I) in which the halogen bridges an opened edge of the metal atom framework; the crystal structure of [Ru3(μ-I)(CO)8{μ-(MeO)2PN(Et)P(OMe)2}2]PF6 is reported.  相似文献   

2.
Dissolution of [Fe2(μ-CO)(CO)4{μ-(RO)2PN(Et)P(OR)2}2] (R = Me, Pri or Ph) and [Ru2(μ-CO)(CO)4{μ-(RO)2PN(Et)P(OR)2}2](R = Me or Pri) in CCl4 leads to the rapid formation of [Fe2(μ-Cl)(CO)4 {μ-(RO)2PN(Et)P(OR)2}2]Cl and [Ru2Cl2(CO)4 {μ-(RO)2 PN(Et)P(OR)2}2], respectively, with the latter isomerising in dichloromethane or chloroform solution to [Ru2(μ-Cl)(Cl(CO)4{μ-(RO)2PN(Et)P(OR)2}2]Cl, which in turn decarbonylates to [Ru2(μ-Cl)Cl(CO)3{μ-(RO)2PN(Et)P(OR)2}2]; the structure of [Ru2Cl2(CO)4{μ-(MeO)2PN(Et)P(OMe)2}2] has been established X-ray crystallographically.  相似文献   

3.
Reaction of [Ru3(CO)12] with a two molar proportion of (RO)2PN(Et)P(OR)2 (R = Me or Pri) in benzene under reflux affords a number of products including [Ru3(CO)10{μ-(RO)2PN(Et)P(OR)2}], [Ru3(CO)9{μ-(RO)2PN(Et)P(OR)2}{η1-(RO)2PN(Et)P(OR)2}] and, as the major species, the tetranuclear derivative [Ru432-CO)(CO)9{μ-(RO)2PN(Et)P(OR)2}2]. An X-ray diffraction study of [Ru432-CO)(CO)9{μ-(MeO)2PN(Et)P(OMe)2}2] has revealed that the skeletal framework adopts a butterfly structure and that one of the carbonyl groups functions as a triply bridging four-electron donor ligand capping the two wing-tip and one of the hinge ruthenium atoms.  相似文献   

4.
Protonation of the dinuclear compounds [M2(μ-CO)(CO)4(μ-R2PYPR2)2] by HBF4 or HPF6 leads to the formation of crystalline cationic hydrido products [M2H(CO)5(μ-R2PYPR2)2]X and [M2(μ-H)(μ-CO)(CO)4(μ-R2PYPR2)2]X (X = BF4 or PF6) in which the hydride ligand is terminal for M = Ru, Y = N(Et) and R = OMe or OPri and bridging for M = Fe, Y = CH2 and R = Me or Ph, for M = Fe, Y = N(Et) and R = OMe, OEt, OPri or OPh and for M = Ru, Y = CH2 and R = Ph; the fluxional behaviour of [Ru2H(CO)5{μ-(RO)2PN(Et)P(OR)2}2]+ (R = Me or Pri) in solution is described.  相似文献   

5.
Reactions of Ru3(CO)12 with diphosphazane monoselenides Ph2PN(R)P(Se)Ph2 [R = (S)-∗CHMePh (L4), R = CHMe2 (L5)] yield mainly the selenium bicapped tetraruthenium clusters [Ru44-Se)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] (1, 3). The selenium monocapped triruthenium cluster [Ru33-Se)(μsb-CO)(CO)72-P,P-Ph2PN((S)-∗CHMePh)PPh2}] (2) is obtained only in the case of L4. An analogous reaction of the diphosphazane monosulfide (PhO)2PN(Me)P(S)(OPh)2 (L6) that bears a strong π-acceptor phosphorus shows a different reactivity pattern to yield the triruthenium clusters, [Ru33-S)(μ3-CO)(CO)7{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (9) (single sulfur transfer product) and [Ru33-S)2(CO)52-P,P-(PhO)2PN(Me)P(OPh)2}{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (10) (double sulfur transfer product). The reactions of diphosphazane dichalcogenides with Ru3(CO)12 yield the chalcogen bicapped tetraruthenium clusters [Ru44-E)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] [R = (S)-∗CHMePh, E = S (6); R = CHMe2, E = S (7); R = CHMe2, E = Se (3)]. Such a tetraruthenium cluster [Ru44-S)2(μ- CO)(CO)8{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (11) is also obtained in small quantities during crystallization of cluster 9. The dynamic behavior of cluster 10 in solution is probed by NMR studies. The structural data for clusters 7, 9, 10 and 11 are compared and discussed.  相似文献   

6.
Reaction of [Ru2(μ-CO)(CO)4{μ-(RO)2PN(Et)(OR)2}2] (R = Me or Pri) with the protonic acids HCl, HBr, HNO3, H2BO2F, CF3COOH, PhSH/HPF6, and H2CO3/HPF6 produces [Ru2A(CO)5 {μ-(RO)2PN(Et)(OR)2}2]+ and/or [Ru2(μ-A)(CO)4{μ-(RO)2PN(Et)(OR)2}2]+ (A = Cl, Br, ON(O)O, OB(F)OH, OC(CF3)O, SPh, and OC(OH)O) via [Ru2H(CO)5{μ-(RO)2PN(Et)(OR)2}2]+ as intermediate; the structure of [Ru2{μ-OB(F)OH}(CO)4{-(PriO)2PN(Et)P(OPri)2}]+ has been established X-ray crystallographically.  相似文献   

7.
Reaction of the square antiprismatic cluster [ppn][Ru88-P)(μ-CO)2(CO)20] [ppn = bis(triphenylphosphoranylidene)ammonium] with triphenylphosphine proceeds by loss of one cluster core vertex, phosphine P-C cleavage, and CO insertion into the putative Ru-phenyl bond to afford [ppn][Ru77-P)(μ-η2-OCPh)(μ-PPh2)(μ-CO)(CO)17] in low yield, the first heptaruthenium μ7-phosphido-ligated cluster.  相似文献   

8.
The clectrochemical behaviour of the complexes [RuII(L)(CO)2Cl2], [RuII(L)(CO)Cl3][Me4N] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 (L = 2,2′-bipyridine or 4,4′-isopropoxycarbonyl-2,2′-bipyridine) has been investigated in CH3CN. The oxidation of [Ru(L)(CO)2Cl2] produces new complexes [RuIII(L)(CO)(CH3CN)2Cl]2+ as a consequence of the instability of the electrogenerated transient RuIII species [RuIII(L)(CO)2Cl2]+. In contrast, the oxidation of [RuII(L)(CO)Cl3][Me4N] produces the stable [RuIII(L)(CO)Cl3] complex. In contrast [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 is not oxidized in the range up to the most positive potentials achievable. The reduction of [RuII(L)(CO)2Cl2] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 results in the formation of identical dark blue strongly adherent electroactive films. These films exhibit the characteristics of a metal-metal bond dimer structure. No films are obtained on reduction of [RuII(L)(CO)Cl3][Me4N]. The effect of the substitution of the bipyridine ligand by electron-withdrawing carboxy ester groups on the electrochemical behaviour of all these complexes has also been investigated.  相似文献   

9.
Cyclic voltammetric studies in acetone and benzonitrile show that the oxidation of [M2(η-CO)(CO)4(η-R2PYPR2)2] (M  Fe, Y  CH2, R  Ph or Me; M  Fe, Y  NEt, R  OMe, PRri or OEt; M  Ru, Y  NEt, R  OPri) generally proceeds via an EEC mechanism, whereas oxidation of [Ru2(η-CO)(CO)4 {η-(MeO)2PN(Et)-P(OMe)2}2] proceeds via an ECE mechanism, for which removal of the second electron is easier than the first, giving rise to an overall 2e-transfer reaction. In both mechanisms the chemical step involves solvent attack.  相似文献   

10.
Triosmium clusters of the type [Os3(CO)10(μ-H)(NHCOR)] (1; R = H, Me, Ph, Et or Pr) are formed in high yields form the reaction of [Os3(CO)10(NCMe)2] (2) with amides. The nature of the products formed from thermolysis of 1 depend on the group, R.  相似文献   

11.
Treatment of [Ru2(μ-CO)(CO)4{μ-(RO)2PN(Et)P(OR)2}2] (R = Me or Pri), electron-rich derivatives of [Ru2(CO)9], with a twice molar amount of a silver(I) salt in aprotic, weakly co-ordinating solvents such as acetone, acetonitrile or benzonitrile leads to the formation of the solvento species [Ru2(CO)5(solvent)- {μ-(RO)2PN(Et)P(OR)2}2]2+. The structure of the benzonitrile derivative, [Ru2(CO)5(PhCN){μ-(PriO)2PN(Et)P(OPri)2}2](SbF6)2, has been established by X-ray crystallography. The acetone molecule in [Ru2(CO)5(acetone){μ- (RO)2PN(Et)P(OR)2}2]2+ is readily replaced by various nucleophiles to afford products of the type [Ru2(CO)5L{μ-(RO)2PN(Et)P(OR)2}2]2+, where L is a neutral ligand such as CO, Me2C6H3NC, PhCN, C5H5N, H2O, Me2S or SC4H8, [Ru2Y(CO)5{μ-(RO)2PN(Et)P(OR)2}2]2+, where Y is an anionic ligand such as Cl, Br, I, CN, SCN, MeCO2, CF3CO2 or [Ru2(μ-Y)(CO)4{μ-(RO)2- PN(Et)P(OR)2}2]+ where Y is an anionic ligand such as Cl, Br, I, SPh, S2CNEt2, MeCO2 or CF3CO2.  相似文献   

12.
The iridium and rhodium complexes [MCl(CO)2(NH2C6H4Me-4)] (M = Ir or Rh) react with [Os3(μ-H)2(CO)10] to give the tetranuclear clusters [MOs3(μ-H)2(μ-Cl)(CO)12]; the iridium compound being structurally identified by X-ray diffraction. Similarly, [IrCl(CO)2(NH2C6H4Me-4)] and [Rh2(μ-CO)2(η-C5Me5)2] afford the tetranuclear cluster [Ir2Rh2(μ-CO)(μ3-CO)2(CO)4(η-C5Me5)2], also characterised by single-crystal X-ray crystallog  相似文献   

13.
Heating cis-[Ru(S2CNMe2)2(CO)2] and [Ru3(CO)12] in xylene affords octanuclear [Ru85-S)24-S)(μ3-S)(μ-CNMe2)2(μ-CO)(CO)15] resulting from the double carbon-sulfur bond cleavage of two dithiocarbamate ligands. The structure consists of a tri-edge-bridged square of ruthenium atoms with a further ruthenium atom being bound only to the central bridging atom. Studies suggest that it may be formed via the pentanuclear intermediate [Ru54-S)2(μ-CNMe2)2(CO)11] which is formed in trace amounts.  相似文献   

14.
The reactions of [Fe3(CO)12] or [Ru3(CO)12] with RNC (R=Ph, C6H4OMe-p or CH2SO2C6H4Me-p) have been investigated using electrospray mass spectrometry. Species arising from substitution of up to six ligands were detected for [Fe3(CO)12], but the higher-substituted compounds were too unstable to be isolated. The crystal structure of [Fe3(CO)10(CNPh)2] was determined at 150 and 298 K to show that both isonitrile ligands were trans to each other on the same Fe atom. For [Ru3(CO)12] substitution of up to three COs was found, together with the formation of higher-nuclearity clusters. [Ru4(CO)11(CNPh)3] was structurally characterised and has a spiked-triangular Ru4 core with two of the CNPh ligands coordinated in an unusual μ32 mode.  相似文献   

15.
The new complex Ru3(CO)9(PPh2H)3 (I) was prepared by the direct thermal reaction of Ru3(CO)12 with PPh2 H and was spectroscopically characterized. Irradiation of I with λ ≥ 300 nm leads to the formation of Ru2(μ-PPh2)2(CO)6 (II) and three new phosphido-bridged complexes, Ru3(μ-H)2(μ-PPh2)2(CO)8 (III), Ru3(μ-H)2(μ-PPh2)2(CO)7(PPh2H) (IV) and Ru3(μ-H)(μ-PPh2)3(CO)7 (V). These complexes have been characterized spectroscopically and Ru3 (μ-H)(μ-PPh2)3(CO)7 by a complete single crystal X-ray structure determination. It crystallizes in the space group P21/n with a 20.256(3), b 22.418(6), c 20.433(5) Å, β 112.64(2)°, V 8564(4) Å3, and Z = 8. Diffraction data were collected on a Syntex P21 automated diffractometer using graphite-monochromatized Mo-Kα radiation, and the structure was refined to RF 4.76% and RwF 5.25% for the 8,847 independent reflections with F0 > 6σ(F0). The structure consists of a triangular array of Ru atoms with seven terminal carbonyl ligands, three bridging diphenylphosphido ligands which bridge each of the RuRu bonds, and the hydride ligand which bridges one RuRu bond. Complex IV was also shown to give V upon photolysis and is thus an intermediate in the photoinduced formation of V from I.  相似文献   

16.
Treatment of [Rh2Cl2(CO)2 {μ-(PhO)2PN(Et)P(OPh)2}2] with various reducing agents gives a number of products, the type depending on the conditions employed. The products isolated include [Rh2(CO)2{μ-(PhO)2PN(Et)P(OPh)2}2], [Rh2(CO)3{μ-(PhO)2PN(Et)P(OPh)2}2],and [Rh2HgCl(μ-H)(CO)2{μ-(PhO)2PN(Et)P(OPh)2}2]; the structure of the last complex was determined by X-ray diffraction.  相似文献   

17.
The complex Os3(CO)92-H)23-S) reacts with KOH/MeOH to produce the anionic complex [Os3(CO)92-H)(μ3-S)?, which reacts in turn with RO+ (R = Me, Et) to form HOs3(CO)9SR. This complex is especially reactive towards ligands L (L = C2H4, CO, PR3 and MeCN) to generate complexes of the type Os3(CO)92-H)(μ2-SR)(L). At 125°C the complex Os3(CO)92-H)(μ2-SR)(C2H4) (in the presence of C2H4) ejects RH and CO to form Os3(CO)82-H)?(μ3-S)(CHCH2). The structures of the new complexes are described and the probable reaction pathways discussed.  相似文献   

18.
Ru3(CO)12 has been reacted with the compounds hex-1-en-3-yne [EtC≡CCH=CH2], 2-methyl-hex-1-en-3-yne [EtC≡CC(=CH2)CH3] and with 3(ethoxy-silyl)propyl isocyanate [(EtO)3Si(CH2)3NCO] and the compound tb [(EtO)3Si(CH2)3NHC(=O)OCH2C≡CCH2OC(=O)NH(CH2)3Si(OEt)3] in hydrocarbon solution. Some reactions in CH3OH/KOH solution (followed by acidification) have also been performed. The main products of the reactions with ene-ynes are the clusters Ru3(CO)6(μ-CO)2L2 (L = C6H8, C7H10) and their demolition products, the “ferrole” Ru2(CO)6L2 complexes. One of the isomers of Ru3(CO)6(μ-CO)2L2, and Ru2(CO)6L2 (L = C7H10) have been reacted with vinyl-triethoxysilane [(EtO)3SiCH=CH2]: these reactions did not afford complexes containing new carbon–carbon bonds or triethoxy-silyl groups. Only polymerization of vinyl-triethoxysilane occurred. The reactions of Ru3(CO)12 with triethoxysilyl-propyl-isocyanate and tb (in the presence of Me3NO) lead to the same products, that is the isomeric complexes (μ-H)Ru3(CO)9[C=N(H)(CH2)3Si(OEt)3] with a “perpendicular” ligand (complex 3, as proposed on the basis of spectroscopic results) and (μ-H)Ru3(CO)9[HC=N(CH2)3Si(OEt)3] with a “parallel” ligand (complex 4, as confirmed by a X-ray analysis). The reaction pathways leading to these products are discussed. Complex 4 has been reacted with tetraethyl orthosilicate and the resulting material has been characterized. These reactions are part of a study on the synthesis of inorganic-organometallic materials through sol–gel techniques. This paper is dedicated to Prof. Gunther Schmid in the occasion of his 70th birthday.  相似文献   

19.
Bis- and, in particular, tetra-substituted ditertiary phosphine and diphosphazane derivatives of [Fe2(CO)9] and [Ru2(CO)9], readily synthesised by reaction of the appropriate bidentate ligand with [Fe2(CO)9] and [Ru3(CO)12], respectively, are very susceptible to electrophilic attack by reagents such as halogens and protons; the solid state structure of one of the products [Fe2(μ-Br)(CO)4 {μ-(PhO)2PN(Et)P(OPh)2}2]PF6 has been determined by X-ray crystallography.  相似文献   

20.
The complex mer-trans-[Mn(CO)3{P(OMe)2Ph}2X] (X = Cl, Br) is an intermediate in the conversion of fac-[Mn(CO)3{P(OMe)2,Ph}2,X] into mer- cis-[Mn(CO)2{P(OMe)2Ph}3X] in the presence of P(OMe)2Ph in benzene. No direct route between the latter two complexes could be detected kinetically. The results imply a trans carbonyl disposition as a prerequisite for higher carbonyl substitution in octahedral Mn1 carbonyl complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号