首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Experimentally observed superdeformed(SD) rotational bands in ~(36)Ar and ~(40)Ar are studied by the cranked shell model(CSM) with the pairing correlations treated by a particle-number-conserving(PNC) method.This is the first time that PNC-CSM calculations have been performed on the light nuclear mass region around A=40.The experimental kinematic moments of inertia J~((1))versus rotational frequency are reproduced well. The backbending of the SD band at frequency around ω =1.5 Me V in ~(36)Ar is attributed to the sharp rise of the simultaneous alignments of the neutron and proton 1 d_(5/2)[202]5/2 pairs and 1 f_(7/2)[321]3/2 pairs, which is a consequence of the band crossing between the 1 d_(5/2)[202]5/2 and 1 f_(7/2)[321]3/2 configuration states. The gentle upbending at low frequency of the SD band in ~(40)Ar is mainly affected by the alignments of the neutron 1 f_(7/2)[321]3/2 pairs and proton 1 d_(5/2)[202]5/2 pairs.The PNC-CSM calculations show that besides the diagonal parts, the off-diagonal parts of the alignments play an important role in the rotational behavior of the SD bands.  相似文献   

2.
With the use of the symmetry-unrestricted cranked Skyrme–Hartree–Fock method in the three-dimensional coordinate-mesh representation, we have carried out a systematic theoretical search for the superdeformed and hyperdeformed rotational bands in the mass A=30–50 region. Along the N=Z line, we have found superdeformed solutions in 32S, 36Ar, 40Ca, 44Ti, and hyperdeformed solutions in 36Ar, 40Ca, 44Ti, 48Cr. The superdeformed band in 40Ca is found to be extremely soft against both the axially symmetric (Y30) and asymmetric (Y31) octupole deformations. An interesting role of symmetry breaking in the mean field is pointed out.  相似文献   

3.
4.
The ΔI=2 and ΔI=4 staggering parameters of transition energies Eγ for normally deformed positive parity ground bands in 232Th and 236,238U nuclei are studied in framework of the symplectic extension of the interacting vector boson model. The model parameters are obtained from the fitting procedure between the calculated excitation energies and the corresponding experimental ones. The staggering parameters represent the finite difference approximations to higher order derivatives dnEγ/d In of the γ -ray transition energies in a ΔI=2 and ΔI=4 bands, which yielding multipoint formulae. The first order derivative (two-point formula) provides us with information about the dynamical moment of inertia. The staggering oscillation for the fourth order derivative (five-point formula) is about 0.5 KeV and is even larger than that in superdeformed bands. The quite similarity in dynamical moments of inertia of the isotopes 236,238U up to high spin states indicate that the phenomenon of identical bands is not restricted to superdeformed bands.  相似文献   

5.
6.
The infrared (IR) spectra of water–ethanol (EtOH) solutions of HCl are measured over a wide range of acid concentration at fixed H2O―EtOH ratios (1 : 1, 1 : 2, and 1 : 40). In these systems, different proton disolvates with (quasi)symmetrical H‐bonds are formed. Their structure and vibrational features are revealed by the density functional theory method coupled with the polarizable continuum model of solvation. In dilute acidic solutions, the Zundel‐type H5O2+ ion is mainly formed. In concentrated HCl solutions, the ions (H2O···H···O(H)Et)+ and (Et(H)O···H···O(H)Et)+ with the quasi‐symmetrical O···H+···O unit having O···O separation <2.45 Å appear. The first ion characterized by the IR‐intensive band around 1800 cm?1 is mainly formed in the 1 : 1 water–ethanol systems. The second ion exists in the 1 : 2 and 1 : 40 water–ethanol systems. Its spectroscopic signatures are the groups of the IR‐intensive bands around 800 and 1050 cm?1. In highly concentrated HCl solutions with the 1 : 40 water–ethanol ratio, a neutral Et(H)O···H+···Cl? complex exists. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号