首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 659 毫秒
1.
2.
Efficient, weakly and properly Pareto optimal solutions of multiobjective optimization problems can be characterized with the help of different cones. Here, contingent, tangent and normal cones as well as cones of feasible directions are used in the characterizations. The results are first presented in convex cases and then generalized to nonconvex cases by employing local concepts.  相似文献   

3.
In this paper we study optimality conditions for optimization problems described by a special class of directionally differentiable functions. The well-known necessary and sufficient optimality condition of nonsmooth convex optimization, given in the form of variational inequality, is generalized to the nonconvex case by using the notion of weak subdifferentials. The equivalent formulation of this condition in terms of weak subdifferentials and augmented normal cones is also presented.  相似文献   

4.
Lagrangian relaxation is often an efficient tool to solve (large-scale) optimization problems, even nonconvex. However it introduces a duality gap, which should be small for the method to be really efficient. Here we make a geometric study of the duality gap. Given a nonconvex problem, we formulate in a first part a convex problem having the same dual. This formulation involves a convexification in the product of the three spaces containing respectively the variables, the objective and the constraints. We apply our results to several relaxation schemes, especially one called “Lagrangean decomposition” in the combinatorial-optimization community, or “operator splitting” elsewhere. We also study a specific application, highly nonlinear: the unit-commitment problem. Received: June 1997 / Accepted: December 2000?Published online April 12, 2001  相似文献   

5.
The strong conical hull intersection property and bounded linear regularity are properties of a collection of finitely many closed convex intersecting sets in Euclidean space. These fundamental notions occur in various branches of convex optimization (constrained approximation, convex feasibility problems, linear inequalities, for instance). It is shown that the standard constraint qualification from convex analysis implies bounded linear regularity, which in turn yields the strong conical hull intersection property. Jameson’s duality for two cones, which relates bounded linear regularity to property (G), is re-derived and refined. For polyhedral cones, a statement dual to Hoffman’s error bound result is obtained. A sharpening of a result on error bounds for convex inequalities by Auslender and Crouzeix is presented. Finally, for two subspaces, property (G) is quantified by the angle between the subspaces. Received October 1, 1997 / Revised version received July 21, 1998? Published online June 11, 1999  相似文献   

6.
We generalize the disjunctive approach of Balas, Ceria, and Cornuéjols [2] and devevlop a branch-and-cut method for solving 0-1 convex programming problems. We show that cuts can be generated by solving a single convex program. We show how to construct regions similar to those of Sherali and Adams [20] and Lovász and Schrijver [12] for the convex case. Finally, we give some preliminary computational results for our method. Received January 16, 1996 / Revised version received April 23, 1999?Published online June 28, 1999  相似文献   

7.
Based on the authors’ previous work which established theoretical foundations of two, conceptual, successive convex relaxation methods, i.e., the SSDP (Successive Semidefinite Programming) Relaxation Method and the SSILP (Successive Semi-Infinite Linear Programming) Relaxation Method, this paper proposes their implementable variants for general quadratic optimization problems. These problems have a linear objective function c T x to be maximized over a nonconvex compact feasible region F described by a finite number of quadratic inequalities. We introduce two new techniques, “discretization” and “localization,” into the SSDP and SSILP Relaxation Methods. The discretization technique makes it possible to approximate an infinite number of semi-infinite SDPs (or semi-infinite LPs) which appeared at each iteration of the original methods by a finite number of standard SDPs (or standard LPs) with a finite number of linear inequality constraints. We establish:?•Given any open convex set U containing F, there is an implementable discretization of the SSDP (or SSILP) Relaxation Method which generates a compact convex set C such that F⊆C⊆U in a finite number of iterations.?The localization technique is for the cases where we are only interested in upper bounds on the optimal objective value (for a fixed objective function vector c) but not in a global approximation of the convex hull of F. This technique allows us to generate a convex relaxation of F that is accurate only in certain directions in a neighborhood of the objective direction c. This cuts off redundant work to make the convex relaxation accurate in unnecessary directions. We establish:?•Given any positive number ε, there is an implementable localization-discretization of the SSDP (or SSILP) Relaxation Method which generates an upper bound of the objective value within ε of its maximum in a finite number of iterations. Received: June 30, 1998 / Accepted: May 18, 2000?Published online September 20, 2000  相似文献   

8.
The paper extends prior work by the authors on loqo, an interior point algorithm for nonconvex nonlinear programming. The specific topics covered include primal versus dual orderings and higher order methods, which attempt to use each factorization of the Hessian matrix more than once to improve computational efficiency. Results show that unlike linear and convex quadratic programming, higher order corrections to the central trajectory are not useful for nonconvex nonlinear programming, but that a variant of Mehrotra’s predictor-corrector algorithm can definitely improve performance. Received: May 3, 1999 / Accepted: January 24, 2000?Published online March 15, 2000  相似文献   

9.
The alternating directions method (ADM) is an effective method for solving a class of variational inequalities (VI) when the proximal and penalty parameters in sub-VI problems are properly selected. In this paper, we propose a new ADM method which needs to solve two strongly monotone sub-VI problems in each iteration approximately and allows the parameters to vary from iteration to iteration. The convergence of the proposed ADM method is proved under quite mild assumptions and flexible parameter conditions. Received: January 4, 2000 / Accepted: October 2001?Published online February 14, 2002  相似文献   

10.
Logarithmic SUMT limits in convex programming   总被引:1,自引:1,他引:0  
The limits of a class of primal and dual solution trajectories associated with the Sequential Unconstrained Minimization Technique (SUMT) are investigated for convex programming problems with non-unique optima. Logarithmic barrier terms are assumed. For linear programming problems, such limits – of both primal and dual trajectories – are strongly optimal, strictly complementary, and can be characterized as analytic centers of, loosely speaking, optimality regions. Examples are given, which show that those results do not hold in general for convex programming problems. If the latter are weakly analytic (Bank et al. [3]), primal trajectory limits can be characterized in analogy to the linear programming case and without assuming differentiability. That class of programming problems contains faithfully convex, linear, and convex quadratic programming problems as strict subsets. In the differential case, dual trajectory limits can be characterized similarly, albeit under different conditions, one of which suffices for strict complementarity. Received: November 13, 1997 / Accepted: February 17, 1999?Published online February 22, 2001  相似文献   

11.
An interior Newton method for quadratic programming   总被引:2,自引:0,他引:2  
We propose a new (interior) approach for the general quadratic programming problem. We establish that the new method has strong convergence properties: the generated sequence converges globally to a point satisfying the second-order necessary optimality conditions, and the rate of convergence is 2-step quadratic if the limit point is a strong local minimizer. Published alternative interior approaches do not share such strong convergence properties for the nonconvex case. We also report on the results of preliminary numerical experiments: the results indicate that the proposed method has considerable practical potential. Received October 11, 1993 / Revised version received February 20, 1996 Published online July 19, 1999  相似文献   

12.
The feasible set of a convex semi–infinite program is described by a possibly infinite system of convex inequality constraints. We want to obtain an upper bound for the distance of a given point from this set in terms of a constant multiplied by the value of the maximally violated constraint function in this point. Apart from this Lipschitz case we also consider error bounds of H?lder type, where the value of the residual of the constraints is raised to a certain power.?We give sufficient conditions for the validity of such bounds. Our conditions do not require that the Slater condition is valid. For the definition of our conditions, we consider the projections on enlarged sets corresponding to relaxed constraints. We present a condition in terms of projection multipliers, a condition in terms of Slater points and a condition in terms of descent directions. For the Lipschitz case, we give five equivalent characterizations of the validity of a global error bound.?We extend previous results in two directions: First, we consider infinite systems of inequalities instead of finite systems. The second point is that we do not assume that the Slater condition holds which has been required in almost all earlier papers. Received: April 12, 1999 / Accepted: April 5, 2000?Published online July 20, 2000  相似文献   

13.
We describe a new convex quadratic programming bound for the quadratic assignment problem (QAP). The construction of the bound uses a semidefinite programming representation of a basic eigenvalue bound for QAP. The new bound dominates the well-known projected eigenvalue bound, and appears to be competitive with existing bounds in the trade-off between bound quality and computational effort. Received: February 2000 / Accepted: November 2000?Published online January 17, 2001  相似文献   

14.
In this paper necessary, and sufficient optimality conditions are established without Lipschitz continuity for convex composite continuous optimization model problems subject to inequality constraints. Necessary conditions for the special case of the optimization model involving max-min constraints, which frequently arise in many engineering applications, are also given. Optimality conditions in the presence of Lipschitz continuity are routinely obtained using chain rule formulas of the Clarke generalized Jacobian which is a bounded set of matrices. However, the lack of derivative of a continuous map in the absence of Lipschitz continuity is often replaced by a locally unbounded generalized Jacobian map for which the standard form of the chain rule formulas fails to hold. In this paper we overcome this situation by constructing approximate Jacobians for the convex composite function involved in the model problem using ε-perturbations of the subdifferential of the convex function and the flexible generalized calculus of unbounded approximate Jacobians. Examples are discussed to illustrate the nature of the optimality conditions. Received: February 2001 / Accepted: September 2001?Published online February 14, 2002  相似文献   

15.
Solving large quadratic assignment problems on computational grids   总被引:10,自引:0,他引:10  
The quadratic assignment problem (QAP) is among the hardest combinatorial optimization problems. Some instances of size n = 30 have remained unsolved for decades. The solution of these problems requires both improvements in mathematical programming algorithms and the utilization of powerful computational platforms. In this article we describe a novel approach to solve QAPs using a state-of-the-art branch-and-bound algorithm running on a federation of geographically distributed resources known as a computational grid. Solution of QAPs of unprecedented complexity, including the nug30, kra30b, and tho30 instances, is reported. Received: September 29, 2000 / Accepted: June 5, 2001?Published online October 2, 2001  相似文献   

16.
A conic linear system is a system of the form?P(d): find x that solves b - AxC Y , xC X ,? where C X and C Y are closed convex cones, and the data for the system is d=(A,b). This system is“well-posed” to the extent that (small) changes in the data (A,b) do not alter the status of the system (the system remains solvable or not). Renegar defined the “distance to ill-posedness”, ρ(d), to be the smallest change in the data Δd=(ΔAb) for which the system P(dd) is “ill-posed”, i.e., dd is in the intersection of the closure of feasible and infeasible instances d’=(A’,b’) of P(·). Renegar also defined the “condition measure” of the data instance d as C(d):=∥d∥/ρ(d), and showed that this measure is a natural extension of the familiar condition measure associated with systems of linear equations. This study presents two categories of results related to ρ(d), the distance to ill-posedness, and C(d), the condition measure of d. The first category of results involves the approximation of ρ(d) as the optimal value of certain mathematical programs. We present ten different mathematical programs each of whose optimal values provides an approximation of ρ(d) to within certain constants, depending on whether P(d) is feasible or not, and where the constants depend on properties of the cones and the norms used. The second category of results involves the existence of certain inscribed and intersecting balls involving the feasible region of P(d) or the feasible region of its alternative system, in the spirit of the ellipsoid algorithm. These results roughly state that the feasible region of P(d) (or its alternative system when P(d) is not feasible) will contain a ball of radius r that is itself no more than a distance R from the origin, where the ratio R/r satisfies R/rc 1 C(d), and such that r≥ and Rc 3 C(d), where c 1,c 2,c 3 are constants that depend only on properties of the cones and the norms used. Therefore the condition measure C(d) is a relevant tool in proving the existence of an inscribed ball in the feasible region of P(d) that is not too far from the origin and whose radius is not too small. Received November 2, 1995 / Revised version received June 26, 1998?Published online May 12, 1999  相似文献   

17.
In the single source unsplittable min-cost flow problem, commodities must be routed simultaneously from a common source vertex to certain destination vertices in a given graph with edge capacities and costs; the demand of each commodity must be routed along a single path so that the total flow through any edge is at most its capacity. Moreover, the total cost must not exceed a given budget. This problem has been introduced by Kleinberg [7] and generalizes several NP-complete problems from various areas in combinatorial optimization such as packing, partitioning, scheduling, load balancing, and virtual-circuit routing. Kolliopoulos and Stein [9] and Dinitz, Garg, and Goemans [4] developed algorithms improving the first approximation results of Kleinberg for the problem of minimizing the violation of edge capacities and for other variants. However, known techniques do not seem to be capable of providing solutions without also violating the cost constraint. We give the first approximation results with hard cost constraints. Moreover, all our results dominate the best known bicriteria approximations. Finally, we provide results on the hardness of approximation for several variants of the problem. Received: August 23, 2000 / Accepted: April 20, 2001?Published online October 2, 2001  相似文献   

18.
In this paper, we consider a special class of nonconvex programming problems for which the objective function and constraints are defined in terms of general nonconvex factorable functions. We propose a branch-and-bound approach based on linear programming relaxations generated through various approximation schemes that utilize, for example, the Mean-Value Theorem and Chebyshev interpolation polynomials coordinated with a Reformulation-Linearization Technique (RLT). A suitable partitioning process is proposed that induces convergence to a global optimum. The algorithm has been implemented in C++ and some preliminary computational results are reported on a set of fifteen engineering process control and design test problems from various sources in the literature. The results indicate that the proposed procedure generates tight relaxations, even via the initial node linear program itself. Furthermore, for nine of these fifteen problems, the application of a local search method that is initialized at the LP relaxation solution produced the actual global optimum at the initial node of the enumeration tree. Moreover, for two test cases, the global optimum found improves upon the solutions previously reported in the source literature. Received: January 14, 1998 / Accepted: June 7, 1999?Published online December 15, 2000  相似文献   

19.
We consider stochastic programming problems with probabilistic constraints involving integer-valued random variables. The concept of a p-efficient point of a probability distribution is used to derive various equivalent problem formulations. Next we introduce the concept of r-concave discrete probability distributions and analyse its relevance for problems under consideration. These notions are used to derive lower and upper bounds for the optimal value of probabilistically constrained stochastic programming problems with discrete random variables. The results are illustrated with numerical examples. Received: October 1998 / Accepted: June 2000?Published online October 18, 2000  相似文献   

20.
《Optimization》2012,61(3):283-304
Given a convex vector optimization problem with respect to a closed ordering cone, we show the connectedness of the efficient and properly efficient sets. The Arrow–Barankin–Blackwell theorem is generalized to nonconvex vector optimization problems, and the connectedness results are extended to convex transformable vector optimization problems. In particular, we show the connectedness of the efficient set if the target function f is continuously transformable, and of the properly efficient set if f is differentiably transformable. Moreover, we show the connectedness of the efficient and properly efficient sets for quadratic quasiconvex multicriteria optimization problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号