首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Ba2V2O7 is triclinic with a = 13.571(3), b = 7.320(2), c = 7.306(2) Å, α = 90.09(1), β = 99.48(1), β = 99.48(1), γ = 87.32(1)°, V = 7.15.1 Å3, Z = 4, and space group P1. The crystal structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares analysis to a Rw of 0.034 (R = 0.034) using 2484 reflections measured on a Syntex P1 automatic four-circle diffractometer. The structure has two unique divanadate groups that are repeated by the b and c lattice translations to form sheets of divanadate groups parallel to (100). These sheets are linked by four unique Ba atoms that lie between these sheets. Ba(1) and Ba(3) are coordinated by eight oxygens arranged in a distorted biaugmented triangular prism and a distorted cubic antiprism, respectively. Ba(2) is coordinated by 10 oxygens arranged in a distorted gyroelongated square dipyramid and Ba(4) is coordinated by nine oxygens arranged in a distorted triaugmented triangular prism. These coordination numbers are substantiated by a bond strength analysis of the structure, and the variation in 〈BaO〉 distances is compatible with the assigned cation and anion coordination numbers. Both divanadate groups are in the eclipsed configuraton with 〈VO(br)〉 bond lengths of 1.821(4) and 1.824(4) Å and VO(br)V angles of 125.6(3) and 123.7(3)°, respectively. Examination of the divanadate groups in a series of structures allows certain generalizations to be made. Longer 〈VO(br)〉 bond lengths are generally associated with smaller VO(br)V angles. When VO(br)V < 140°, the divanadate group is generally in an eclipsed configuration; when VO(br)V > 140°, the divanadate group is generally in a staggered configuration. Nontetrahedral cations with large coordination numbers require more oxygens with which to bond, and hence O(br) is more likely to be three coordinate, with the divanadate group in the eclipsed configuration. In the eclipsed configuration, decrease in VO(br)V promotes bonding between O(br) and nontetrahedral cations, and hence smaller nontetrahedral cations are generally associated with smaller VO(br)V angles.  相似文献   

2.
Fe2P2O7 crystallizes in the C1 space group with lattice parameters a = 6.649(2)Å, b = 8.484(2)Å, c = 4.488(1)Å, α = 90.04°, β = 103.89(3)°, γ = 92.82(3)°, and ?cal = 3.86 g/cc. It is essentially isostructural with β-Zn2P2O7. As in the Zn compound, the bridging oxygen atom in the P2O7 group shows a high anisotropic thermal motion. It appears that the P-O-P bond angle is linear as a result of extensive π bonding with the p orbitals on the bridging oxygen atom. The high thermal motion is vibration of the atom into cavities in the structure.  相似文献   

3.
Single crystals of Pb2P2O7 have been grown by the Czochralski technique. They have the triclinic space group P1 with cell dimensions a = 6.9627 Å, b = 6.9754Å, c = 12.764 Å, α = 96.78°, β = 91.16°, γ = 89.68°. There are four molecules per unit cell. Dielectric properties for this compound have been measured and are discussed.  相似文献   

4.
Powder neutron diffraction measurements were carried out for the ruthenium pyrochlore oxide Er2Ru2O7. The magnetic structure for this compound at 3.0 K has been solved using Rietveld analysis. The observed magnetic reflections suggest that the magnetic transitions are regarded as those to a long-range ordered state. It seems that the magnetic order of the Ru4+ and Er3+ magnetic moments occurs at 90 and 10 K, respectively.  相似文献   

5.
The crystal structures of K2S2O7, KNaS2O7 and Na2S2O7 have been solved and/or refined from X-ray synchrotron powder diffraction data and conventional single-crystal data. K2S2O7: From powder diffraction data, monoclinic C2/c, Z=4, a=12.3653(2), b=7.3122(1), , β=93.0792(7)°, RBragg=0.096. KNaS2O7: From powder diffraction data; triclinic , Z=2, a=5.90476(9), b=7.2008(1), , α=101.7074(9), β=90.6960(7), γ=94.2403(9)°, RBragg=0.075. Na2S2O7: From single-crystal data; triclinic , Z=2, a=6.7702(9), b=6.7975(10), , α=116.779(2), β=96.089(3), γ=84.000(3)°, RF=0.033. The disulphate anions are essentially eclipsed. All three structures can be described as dichromate-like, where the alkali cations coordinate oxygens of the isolated disulphate groups in three-dimensional networks. The K-O and Na-O coordinations were determined from electron density topology and coordination geometry. The three structures have a cation-disulphate chain in common. In K2S2O7 and Na2S2O7 the neighbouring chains are antiparallel, while in KNaS2O7 the chains are parallel. The differences between the K2S2O7 and Na2S2O7 structures, with double-, respectively single-sided chain connections and straight, respectively, corrugated structural layers can be understood in terms of the differences in size and coordinating ability of the cations.  相似文献   

6.
The crystal structure of Na7Mg4.5(P2O7)4 has been solved by direct methods from the three-dimensional X-ray data. The space group is P1. The crystal structure consists of Mg2+, Na+, and P2O4?7 ions. One magnesium atom at symmetry center (0,0,0) and two sodium atoms at ±(?0.0421, ?0.0596, 0.2230) display occupation factors 0.5 each. A short interatomic distance between these Na+ and Mg2+ ions (1.80 ± 0.01 Å) excludes the occupation of both sites in the same unit cell. The crystal structure of Na7Mg4.5(P2O7)4 consists of unit cells containing Na8Mg4(P2O7)4 or Na6Mg5(P2O7)4 with a statistical occurrence 1:1.Each Mg2+ ion is octahedrally coordinated by six O2? ions at distances 1.979 – 2.270 Å. The coordination polyhedra around the Na+ ions are ill-defined. The bond angles POP in the P2O4?7 groups are 126.6 and 133.6° (±0.3°). The final reliability factor R is 7.1%.  相似文献   

7.
Two compounds NaSr0.5Al2B2O7 and NaCa0.5Al2B2O7, have been found to crystallize into a new structure type by Rietveld refinement from X-ray powder diffraction data. Their structure belongs to hexagonal space group P63/m, with lattice parameters of , for NaSr0.5Al2B2O7 and , for NaCa0.5Al2B2O7, respectively. The structure is built up by [Al2B2O7]2− double layer and Na+/Ca2+ or Na+/Sr2+ ions alternatively stacking along the c-axis. The sites in the inter-double layer are fully occupied jointly by Na and Ca or Sr, but the intra-double layer sites are only half occupied solely by Na. A mechanism of the transition of the structure from CaAl2B2O7 to present structure type by replacing only 1% Ca by Na (2%) as observed by Chang and Keszler (Mater. Res. Bull. 33 (1998) 299) is also proposed.  相似文献   

8.
Preparation of new solid solutions containing divalent europium have been tried in the systems Eu2Nb2O7Sr2Nb2O7 and Eu2Ta2O7Sr2Ta2O7. These solid solutions described as Eu2xSr2(1?x)M2O7 (M = Nb and Ta) exist in a pure orthorhombic phase in a limited region of x from 0 to about 0.5. The compounds with compositions close to Eu2M2O7 exist but techniques have not been found to prepare them in pure form.  相似文献   

9.
The atomic arrangement in the fluorite-related phase, Ca2Hf7O16, has been determined by powder X-ray diffraction. The unit cell is rhombohedral, R3, with a = 9.5273Å, α = 38.801°, and Z = 1, and its volume is 214 times that of the fluorite subcell from which it is derived. The cations are ordered on the cation sites of the fluorite structure with the calcium ions segregated into discrete layers parallel to the (111) fluorite plane: there is some evidence that the formal anion vacancies are also ordered.  相似文献   

10.
The crystal structure of metastable Li2Si3O7 was determined from single crystal X-ray diffraction data. The orthorhombic crystals were found to adopt space group Pmca with unit cell parameters of , and . The content of the cell is Z=4. The obtained structural model was refined to a R-value of 0.035. The structure exhibits silicate sheets, which can be classified as [Si6O14] using the silicate nomenclature of Liebau. The layers are build up from zweier single chains running parallel to c. Raman spectra are presented and compared with other silicates. Furthermore, the structure is discussed versus Na2Si3O7.  相似文献   

11.
A new oxide, CsTi2NbO7, with a structure related to that of KTiNbO5 has been prepared and described. This titanoniobate, with orthorhombic symmetry, has the unit-cell dimensionsa = 9.326, b = 18.412, andc = 3.798A?. From the electron diffraction results two space groups,Pna21 orPnam, are possible. Its structure, which has been studied from powder data, is built up from units of 2 × 3 edge-sharing octahedra; these units share the corners of their octahedra, forming puckered layers. The layers are held together by cesium ions in distorted cubic sites, as in KTiNbO5.  相似文献   

12.
The silicate compounds Sc2Si2O7 and In2Si2O7 have been converted from thortveitite type to pyrochlore type at 1000°C, 120 kbar, with resulting cell constants of 9.287(3) and 9.413(3) Å, respectively. Invariant reflection intensities in the X-ray powder diffraction patterns allowed precise absorption corrections to be made, and refinement of thermal parameters and of the single structural parameter x gave values of 0.4313(21) and 0.4272(15), respectively. The corresponding six-coordinate SiO distances were 1.761(7) and 1.800(5) Å, and the average eight-coordinate distances for ScO8 and InO8 were 2.267 and 2.275 Å. Values of structure-refined bond lengths for compounds containing six-coordinate silicon are surveyed, and overall weighted average octahedral distances of 1.782(14) Å for SiO and 2.520(18) Å for OO are derived. Pyrochlore phases were not produced from rare-earth disilicate or monosilicate phases subjected to the same reaction conditions as the Sc and In compounds.  相似文献   

13.
The actual structure of the vanadium phosphate K6(VO)2(V2O3)2(PO4)4(P2O7) has been determined, using a much larger single crystal than previously used for the isostructural Rb-phase. The actual supercell is four times larger than the corresponding orthorhombic subcell with , , , α=β=γ=90°. The structure resolution, performed in the triclinic space group C-1, shows that the P2O7 groups alone are responsible for the superstructure, all the other atoms keeping the atomic positions of the orthorhombic subcell. This structural study shows a perfect ordering of the P2O7 groups in the actual structure, in contrast to the results obtained from the subcell. Concomitantly, the V4+ and V5+ are found to be ordered in the form of [110] stripes.  相似文献   

14.
Crystal structure of BaMg2Si2O7 was determined and refined by a combined powder X-ray and neutron Rietveld method (monoclinic, C2/c, no. 15, Z=8, a=7.24553(8) Å, b=12.71376(14) Å, c=13.74813(15) Å, β=90.2107(8)°, V=1266.44(2) Å3; Rp/Rwp=3.38%/4.77%). The structure contains a single crystallographic type of Ba atom coordinated to eight O atoms with C1 (1) site symmetry. Under 325-nm excitation Ba0.98Eu0.02Mg2Si2O7 exhibits an asymmetric emission band around 402 nm. The asymmetric shape of the emission band is likely associated with a small electron-phonon coupling in BaMg2Si2O7. The integrated intensity of the emission band was observed to remain constant over the temperature range 4.2-300 K.  相似文献   

15.
The phase equilibria in the system Na4P2O7Mg2P2O7 were studied by means of DTA, hot stage microscopy and X-ray diffraction analysis. There is one intermediate compound in the system which melts congruently at 832°C of chemical composition Na7Mg4.5(P2O7)4. It crystallizes in the triclinic system with unit cell constants: a = 10.882(1), b = 9.734(1), c = 6.372(1) Å; α = 112.49(1), β = 99.63(1), γ = 107.40(1)°.  相似文献   

16.
Offwhite pure Fe_2P_2O_7 was synthesized through solid phase reaction using Fe_2O_3 and NH_4H_2PO_4 in argon atmosphere.The reaction products of Fe_2O_3 and NH4_H_2PO_4 at a series of temperatures from 400 to 900℃were characterized by XRD.Comparison and analysis of XRD patterns of resultant products indicated well-crystallized Fe_2P_2O_7 could be obtained over 630℃and Fe_2P_2O_7 prepared at 700℃was triclinic in cell type.Comparison of the cell parameters proved that the as-prepared Fe_2P_2O_7 belonged toβ- Fe_2P_2O_7 in crystal phase and SEM showed its size distribution was 0.5-2μm.  相似文献   

17.
The new compound BaMnP2O7 was obtained in two crystallographic modifications, (monoclinic-1) and (triclinic-2), by heating mixtures of BaCO3, P2O5 and MnO2 to 1100°C and to 1000°C for 72 h, respectively. CaMnP2O7 (3) was obtained by heating a mixture of CaCO3, P2O5 and MnO2 to 1050°C for 48 h. Both crystallographic forms of BaMnP2O7 and CaMnP2O7 (3) were investigated by single-crystal X-ray diffraction analysis. The high-temperature monoclinic form of BaMnP2O7 could not be obtained free of the low-temperature triclinic form in the bulk form. In monoclinic-1 the manganese ions exist in a distorted MnO6 octahedron surrounded by five closely and one remotely positioned oxygen atoms. In triclinic-2 and -3 forms the manganese ions are associated in pairs by the formation of Mn2O10 units that share one edge of two adjacent octahedra. The magnetic properties of the triclinic-2 and -3 forms were also investigated. The effective magnetic moments, μeff, are 5.7 B.M. and 5.8 B.M./Mn atom for triclinic-2 and -3, respectively, and are consistent with a high-spin Mn2+ ion in an octahedral environment with five unpaired electrons. The temperature-dependent magnetic measurements of 2 and 3 have revealed a combination of short-range antiferromagnetic coupling, J, between the two Mn ions within the Mn2O10 units and a longer range weaker antiferromagnetic coupling, J′, between the neighbouring Mn2O10 units, |J′/J| = 0.18 and 0.074 for 2 and 3, respectively.  相似文献   

18.
This paper examines the structural changes with temperature and composition in the Sc2Si2O7-Y2Si2O7 system; members of this system are expected to form in the intergranular region of Si3N4 and SiC structural ceramics when sintered with the aid of Y2O3 and Sc2O3 mixtures. A set of different compositions have been synthesized using the sol-gel method to obtain a xerogel, which has been calcined at temperatures between 1300 and 1750 °C during different times. The temperature-composition diagram of the system, obtained from powder XRD data, is dominated by the β-RE2Si2O7 polymorph, with γ-RE2Si2O7 and δ-RE2Si2O7 showing very reduced stability fields. Isotherms at 1300 and 1600 °C have been analysed in detail to evaluate the solid solubility of the components. Although, the XRD data show a complete solid solubility of β-Sc2Si2O7 in β-Y2Si2O7 at 1300 °C, the 29Si MAS-NMR spectra indicate a local structural change at x ca. 1.15 (Sc2−xYxSi2O7) related to the configuration of the Si tetrahedron, which does not affect the long-range order of the β-RE2Si2O7 structure. Finally, it is interesting to note that, although Sc2Si2O7 shows a unique stable polymorph (β), Sc3+ is able to replace Y3+ in γ-Y2Si2O7 in the compositional range 1.86?x?2 (where x is Sc2−xYxSi2O7) as well as in δ-Y2Si2O7 for compositions much closer to the pure Y2Si2O7.  相似文献   

19.
A lithium Mo(V) diphosphate LiMoOP2O7 has been synthesized for the first time. It crystallizes in the space group P 21/n with a = 16.046(4) Å, b = 11.951(2) Å, c = 9.937(2) Å, β = 104.62(2)°. Its original structure is built up from P2O7 groups and MoO6 octahedra forming intersecting tunnels, where the Li+ cations are located with a tetrahedral coordination. This phase belongs to the IB class of Mo(V) phosphates defined by Costentin et al. The [MoP2O8] framework indeed consists of MoP2O11 units built up from one P2O7 group sharing two apices with the same MoO6 octahedron; the MoP2O11 units share their apices forming [MoP2O10]∞ chains running along a and b and the [ 04] direction. This phase exhibits a classical paramagnetic behavior, with 0 = -9.8 K and μ = 1.58 μB.  相似文献   

20.
Two new mixed valent Mo(III)/Mo(IV) diphosphates containing lead Pb2(PbO)2Mo8(P2O7)8 and PbK2Mo8(P2O7)8 have been synthesized. The [Mo8P16O56]∞ frameworks of these phosphates are closely related to that of K0.17MoP2O7: the MoO6 octahedra and P2O7 groups form two sorts of large eight-sided tunnels. They are occupied in an ordered way by PbO chains and Pb2+ cations in Pb2(PbO)2Mo8(P2O7)8 and by K+ and Pb2+ cations in PbK2Mo8(P2O7)8. It results in different symmetries of these two structures, which are tetragonal and monoclinic, respectively, showing the great flexibility of these mixed frameworks, susceptible to accommodate various species with different sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号