首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The high-temperature structural behavior of the layered intergrowth phase Bi4TaO8Cl, belonging to the Sillén-Aurivillius family, has been studied by powder neutron diffraction. This material is ferroelectric, space group P21cn, at TC<640 K. An order-disorder transition to centrosymmetric space group Pmcn is found around 640 K, which involves disordering of TaO6 octahedral tilts. A second phase transition, of a first-order nature, to space group P4/mmm occurs at a temperature of ∼1038 K. The crystal structures of the bromide analogs Bi4MO8Br (M=Nb, Ta) have also been determined at room temperature; both are isomorphous with Bi4TaO8Cl and exhibit maxima in dielectric constant at temperatures of approximately 588 and 450 K, respectively.  相似文献   

2.
The intermetallic compounds Sr11Bi10, Ba11Bi10, and (Sr5Ba6)Sb10 have been obtained from melts of mixtures of the elements. They crystallize in the tetragonal system, space group I4/mmm, Ho11Ge10 structure type, tI84 Pearson symbol, Z=4, with cell parameters a=12.765(3), 13.230(3), 12.748(2) Å and c=18.407(3), 19.365(3), 18.761(2) Å, respectively. The structures were solved from single-crystal X-ray data and refined by full-matrix least-squares to R1=6.71, 5.44, and 5.73%. The structure of M11X10 contains three discrete anionic moieties: square rings X4−4, dumbbells X4−2, and isolated X3−. Using formal charges the unit cell of M11X10 may be described as containing 44 M2+, 2X4−4, 8X4−2, and 16X3− ions. This structure is discussed in comparison with other Bi or Sb pnictide compounds. Bonding is analyzed therein using molecular orbital (EHMO) calculations for the anions (dumbbell and square units) and also the periodic tight-binding method. Lone pair repulsions inside and between the anionic units are evidenced; they are compensated by strong bonding cation-to-anion interactions. Interatomic distances along the series appear to be more dependent on packing than on electronic effects.  相似文献   

3.
Two new isostructural cobalt selenite halides Co5(SeO3)4Cl2 and Co5(SeO3)4Br2 have been synthesized. They crystallize in the triclinic system space group P−1 with the following lattice parameters for Co5(SeO3)4Cl2: a=6.4935(8) Å, b=7.7288(8) Å, c=7.7443(10) Å, α=66.051(11)°, β=73.610(11)°, γ=81.268(9)°, and Z=1. The crystal structures were solved from single-crystal X-ray data, R1=3.73 and 4.03 for Co5(SeO3)4Cl2 and Co5(SeO3)4Br2, respectively. The new compounds are isostructural to Ni5(SeO3)4Br2.Magnetic susceptibility measurements on oriented single-crystalline samples show anisotropic response in a broad temperature range. The anisotropic susceptibility is quantitatively interpreted within the zero-field splitting schemes for Co2+ and Ni2+ ions. Sharp low-temperature susceptibility features, at TN=18 and 20 K for Co5(SeO3)4Cl2 and Co5(SeO3)4Br2, respectively, are ascribed to antiferromagnetic ordering in a minority magnetic subsystem. In isostructural Ni5(SeO3)4Br2 magnetically ordered subsystem represents a majority fraction (TN=46 K). Nevertheless, anisotropic susceptibility of Ni5(SeO3)4Br2 is dominated at low temperatures by a minority fraction, subject to single-ion anisotropy effects and increasing population of Sz=0 (singlet) ground state of octahedrally coordinated Ni2+.  相似文献   

4.
Compounds Ln3MO7, where Ln = La, Nd, Gd, Ho, Er, Y, or Sc, and M = Nb, Ta, or Sb have been examined by powder X-ray diffraction, electron diffraction, and electron microscopy. For large Ln cations, an orthorhombic fluorite-related superstructure is formed, of probable space group Cmcm for Ln = La and C2221 for Ln = Nd, Gd, Ho, or Y, while for the smaller Ln cations, Er, and under some conditions, Ho and Y, the structure is defect fluorite containing microdomains of ordered, but undetermined, structure. The composition Sc3MO7 was not single phase under the conditions used. Compounds of the type Ln2ScMO7 have the pyrochlore structure.  相似文献   

5.
A selection of mixed conducting silver chalcogenide halides of the general formula Ag5Q2X with Q=sulfur, selenium and tellurium and X=chlorine and bromine has been investigated due to their thermoelectric properties. Recently, the ternary counterpart Ag5Te2Cl showed a defined d10-d10 interaction in the disordered cation substructure at elevated temperatures where Ag5Te2Cl is present in its high temperature α-phase. A significant drop of the thermal diffusivity has been observed during the β−α phase transition reducing the values from 0.12 close to 0.08 mm2 s−1. At the same transition the thermopower reacts on the increasing silver mobility and jumps towards less negative values.Thermal conductivities, thermopower and thermal diffusivity of selected compounds with various grades of anion substitution in Ag5Q2X were determined around the silver-order/disorder β−α phase transition. A formation of attractive interactions could be observed for selenium substituted phases while no effect was detected for bromide and sulfide samples. Depending on the grade and type of substitution the thermopower changes significantly at and after the β−α phase transition. Thermal conductivities are low reaching values around 0.2-0.3 W m−1 K−1 at 299 K. Partial anion exchange can substantially tune the thermoelectric properties in Ag5Q2X phases.  相似文献   

6.
The new Ba6Ru2Na2X2O17 (X=V, Mn) compounds have been prepared by electrosynthesis in molten NaOH and their crystal structures have been refined from single crystals X-ray diffraction, space group P63/mmc, Z=2, for X=V: , , R1=4.76%, for X=Mn : , , R1=3.48%. The crystal structure is a 12H-type perovskite with a (ccchcc)2 stacking sequence of [BaO3]c, [BaO3]h and [BaO2]c′ layers. The tridimensional edifice is formed by blocks of Ru2O9 dimers that share corners with NaO6 octahedra. These blocks sandwich double sheets of X5+O4 tetrahedra. Several isotypic Ba6M5+2Na2X5+2O17 materials (X=V, Cr, Mn, P, As) and (M=Ru, Nb, Ta, Sb) have been prepared by solid state reaction and characterized by Rietveld analysis. The magnetic and electric properties have been investigated and show besides the Ru5+2O9 typical intradimer antiferromagnetic couplings, discrepancies of both χ and ρ versus T at 50 and 100 K for Ba6Ru2Na2X2O17 (X=V, As). In this work, a review of the identified Ru-hexagonal perovskite materials is also reported in order to overview the wide variety of possibilities in the field of new compounds synthesis.  相似文献   

7.
The reactions of HgE (E=S, Se) with HgX2 and MX4 (M=Zr, Hf; X=Cl, Br) in evacuated glass ampoules lead to a series of isotypic compounds of the general formula Hg3E2[MX6] in the form of colorless (X=Cl) and light-yellow (X=Br) air-sensitive crystals. The crystal structures of Hg3S2[ZrCl6] (I), Hg3S2[HfCl6] (II), Hg3Se2[ZrCl6] (III), Hg3Se2[HfCl6] (IV), Hg3S2[ZrBr6] (V), and Hg3Se2[ZrBr6] (VI) were refined based on single-crystal data. All compounds crystallize in the monoclinic space group P21/a with the lattice parameters a=662.18(2) pm, b=734.97(3) pm, c=1290.83(5) pm, β=91.755(2)° for (I) and and a=701.97(3) pm, b=756.79(3) pm, c=1350.99(6) pm, β=92.164(3)° for (VI). The structures are built of (Hg3E2)2+ layers stacked perpendicular to the c-axis. The polycationic layers consist of two-dimensionally linked 12-membered Hg6E6 rings in the chair conformation with linear coordinated Hg and trigonal pyramidal coordinated chalcogen atoms. Almost regular octahedral [MX6]2− ions are embedded between the layers. This arrangement is closely related to the structure of Hg3S2[SiF6], which represents a higher symmetric congener. The structure relation is discussed using the supergroup-subgroup relation between space groups.  相似文献   

8.
Chemical and electrochemical insertion of Li at room temperature, as well as insertion of lead and tin at moderate temperatures (500°C), into the binary phase Mo6X8 forms ternary molybdenum chalcogenides MxMo6X8 (X = S, Se). Crystallographic parameters, superconducting properties, and magnetic susceptibility are reported. The stoichiometry x for lead and tin is shown not to exceed x = 1, while for Li, x can reach approximately 4.0. For the lead and tin sulfide series, the hexagonal lattice parameters and superconducting critical temperatures (Tc) are invariant to changes in the nominal composition of 0.8 < x < 1.2, while both an increase in Tc and a small decrease in ch is observed for the selenides; a narrow homogeneity range exists near x = 1 below 500°C for both these sulfides and selenides, the single-phase region being somewhat larger in the selenides. In contrast, several single-phase regions and large unit cell changes are observed in LixMo6X8 (0 < x < 3.2). Magnetic susceptibility measurements of the lithiated compounds at x ~ 3.2 reveals a structural phase transition at 140 and 185 K for the sulfide and selenide, respectively; but neither superconducts down to 1.5 K. At lower lithium concentration near x ~ 1.0, the Tc of the sulfide is raised from that of Mo6S8 (1.8 K) to 5.2 K but the Tc of Mo6Se8 (6.5 K) is depressed to 3.9 K.  相似文献   

9.
The phase diagrams of the spinel systems Cd1?xCuxCr2S4, Cd1?xCuxCr2Se4, and Mn1?xCuxCr2S4 have been studied on the basis of X-ray powder photographs of quenched samples and high-temperature X-ray diffraction patterns. At room temperature the mutual solid solubilities of the metallic copper and the semiconducting cadmium and manganese spinels are only small (x < 0.05 and >0.95). The interchangeability, however, increases largely with increasing temperature. Complete series of mixed crystals, as in the Zn1?xCuxCr2X4 (X = S, Se) systems, however, are not formed. The solid solutions with x > 0.07 and <0.95, x > 0.095 and <0.90, and x > 0.36 and <0.87, respectively, formed at higher temperatures cannot be quenched to room temperature without decomposition. The unit cell dimensions of the spinel solid solutions studied obviously do not obey Vegard's rule.  相似文献   

10.
MFX (M = Ca, Sr, Eu, Ba; X = Cl, Br, I) compounds have been prepared by solid-state reaction. Lattice parameters and X-ray diffraction patterns are presented for these compounds, which are all isostructural with tetragonal PbFCl. Attempts to synthesize solid solutions of Sr(Eu)FCl and of MFCl compounds with several rare earth oxychlorides are reported. The crystal chemistry of MFX, MHX, and LnOX compounds is briefly discussed in comparison, and the observed ca ratios are interpreted on the basis of electrostatic calculations.  相似文献   

11.
By the reaction of a new donor molecule, ethylenedithiotetrathiafulvalenoquinone-1,3-dithiolemethide (1) with FeBr3, GaBr3 or FeCl3 in CH3CN/CS2 charge transfer (CT) salts of 1 with counteranions of FeBr4, GaBr4 or FeCl4 (12·FeBr4, 12·GaBr4 and 12·FeCl4) as plate crystals were obtained. Their crystal structures are apparently similar to each other, in which 1 molecules are dimerized in the parallel direction of their molecular long axes, and the dimers are stacked with changing the direction of the molecular long axes alternately to form a one- dimensional column. The counteranions intervene between the 1-stacked columns and are aligned in a zigzag manner. The room-temperature electrical conductivities of 12·FeBr4 and 12·GaBr4 are fairly high (10-15 S cm−1), but a small value (0.8 S cm−1) is obtained for 12·FeCl4. For all CT salts, temperature dependences of electrical conductivity are semiconducting in spite of very small activation energies (30-90 meV). Based on the comparison between their electrical conducting and magnetic properties, it is suggested that the d spins of FeBr4 or FeCl4 ions exert almost no influence on the π conducting electrons in the 1-stacked column.  相似文献   

12.
Four new ternary compounds Zr5M1-xPn2+x (M=Cr, Mn; Pn=Sb, Bi) were synthesized by arc-melting and annealing at 800 °C. They crystallize in the tetragonal W5Si3-type structure. The crystal structure of Zr5Cr0.49(2)Sb2.51(2) was refined from powder X-ray diffraction data by the Rietveld method (Pearson symbol tI32, tetragonal, space group I4/mcm, Z=4, a=11.1027(6) Å, c=5.5600(3) Å). Four-probe electrical resistivity measurements on sintered polycrystalline samples indicated metallic behavior. Magnetic susceptibility measurements between 2 and 300 K revealed temperature-independent Pauli paramagnetism for Zr5Cr1-xSb2+x and Zr5Cr1-xBi2+x, but a strong temperature dependence for Zr5Mn1-xSb2+x and Zr5Mn1-xBi2+x which was fit to the Curie-Weiss law for the latter with θ=-11.3 K and μeff=1.81(1) μB. Band structure calculations for Zr5Cr0.5Sb2.5 support a structural model in which Cr and Sb atoms alternate within the chain of interstitial sites formed at the centers of square antiprismatic Zr8 clusters.  相似文献   

13.
14.
The ir spectra of A3M6Si4O26 (A = Ba, Sr; M = Nb, Ta) and K6M6Si4O26 oxides, whose structure contains linear Si2O7 groups, are discussed with particular emphasis on the peculiar behavior of the antisymmetric stretching frequency of the linear SiOSi bridge. In accord with previous data, this frequency is the highest of the spectrum (near 1200 cm?1), but it is significantly lowered (by about 75 cm?1) when passing from the A3M6Si24O26 to the K6M6Si4O26 compounds. This is readily explained by the peculiar structure of the K6 compounds, in which three (out of the six) K+ cations are located near the bridge oxygen (A2 sites), these sites remaining empty in the A3M6Si4O26 compounds. The resulting KO bonding weakens the SiO bond, thus leading to a lowering of the corresponding bridge frequency. The same type of explanation holds for the presence of a new band at an intermediate frequency (about 1150 cm?1) in phases of intermediate composition K6?2xBaxM6Si4O26, this new band being correlated with a partial occupancy of the A2 sites. This has been applied to, and is a sensitive means of, detecting nonstoichiometry in the A2 sites of other compounds with (M6X4O26) layers (X = Si, Ge) such as Ba6+xNb14Si4O47, K8M14Si4O47, and K10M22X4O68 (M = Nb, Ta).  相似文献   

15.
The quaternary systems Ca-N-Cl-Br and Ca-N-Br-I have been investigated resulting in the synthesis of a number of new layered nitride mixed halides. The evolution of structure with composition has been investigated by powder X-ray and powder neutron diffraction techniques. A continuous solid solution exists between Ca2NCl and Ca2NBr with intermediate compounds adopting the same anti- α-NaFeO2 structure (rhombohedral space group ) as the ternary end members. A phase transition occurs in the Ca2NBr1−yIy system between y=0.7 and y=0.8 corresponding to a switch from cubic close packing to hexagonal close packing of metal-nitrogen layers and corresponding adoption of the anti-β-RbScO2 (filled anti-CdI2) structure (hexagonal space group P63/mmc). While nitride and halide anions occupy distinct crystallographic sites, there is no ordering of halides in quaternary materials irrespective of stoichiometry or structure type. All the nitride halides show temperature independent paramagnetic behaviour between 2 and 300 K.  相似文献   

16.
A number of new, layered nitride mixed halides have been synthesised in the quaternary phase systems Sr-N-Cl-Br and Sr-N-Br-I. The variation in structure with composition has been investigated by powder X-ray and powder neutron diffraction techniques and the structure of strontium nitride iodide, Sr2NI, has been determined for the first time (rhombohedral space group R-3m, , , Z=3). A continuous solid solution exists between Sr2NCl and Sr2NBr with intermediate compounds adopting the same anti-α-NaFeO2 structure (rhombohedral space group R-3m) as the ternary end members. A similar smooth and linear relationship between structure and composition is seen from Sr2NBr to Sr2NI and hence cubic close packing of metal-nitrogen layers is adopted regardless of halide, X (X′). While nitride and halide anions occupy distinct crystallographic sites, there is no ordering of the halides in the quaternary materials irrespective of stoichiometry or temperature (between 3 and 673 K).  相似文献   

17.
18.
Solvothermal reactions of the flexible ligand 1,6-Bi(benzotriazole)hexane with CuI and KI or CuBr and KBr in ethanol generate two hybrid compounds, namely, {(HETA)[(Cu6I7)(ETA)2]}n(1) and {K(Cu6Br7)(BBTH)}n(2) (ETA=N-ethylbenzotriazole, HETA=protonated N-ethylbenzotriazole, BBTH=1,6-bi(benzotriazole)hexane). In 1, two [Cu3I4] vertex missing cubane-like subunits link each other by sharing one I atom to give a [Cu6I7] cluster, which further form novel 1D [Cu6I7]nn anionic chain. Two in-situ generated ETA ligands finished the 4-coordinated environments of copper centers and another one discrete protonated ETA ligand keeps the charge neutrality for 1. In complex 2, bowl-shaped [Cu5Br4] clusters and rhomboid [Cu2Br2] dimers link each other to generate a [Cu6Br7]nn 1D chain. BBTH ligands complete the tetrahedral spheres of Cu(I), and 7-coordinated K atoms further extend the 1D chain motifs to a 2D hybrid layer of 2. The UV-vis diffuse reflectance spectrum and luminescence measurements show that compound 1 and 2 both are potential semiconductor and photoluminescence materials.  相似文献   

19.
Profile analysis of constant-wavelength powder neutron diffraction data has been used to refine the crystal structure of the ordered perovskite Ca2YRuO6. The material is monoclinic (space group P21n) with a disordered arrangement of calcium and yttrium on the A site and one of the B sites, such that the formula is best written as Ca1.43Y0.57[(Ca0.57Y0.43)Ru]O6. Low-temperature neutron diffraction experiments showed that the material is a Type I antiferromagnet at 2.5 K with an ordered magnetic moment of 1.2(1)μB per Ru5+. It is suggested that the dominant factor in determining the electronic properties of the series M2+2X3+Ru5+O6 (M = Ca, Sr, Ba; X = La, Y) is the Ru-Ru separation distance.  相似文献   

20.
AVX3 (A = Rb, Cs, (CD3)4 N; X = Cl, Br, I) crystallize in the hexagonal system, space group P63mmc, with chains of face-sharing VX6 octahedra along the c-axis. This leads to a pronounced one-dimensional character of their magnetic properties with a strong antiferromagnetic exchange interaction J between nearest neighbor V2+ ions along these chains. All compounds except [(CD3)4N]VCl3 order three-dimensionally with ordering temperatures Tc between 13 and 32 K. In the ordered phase the magnetic moments, μ, lie in the basal plane in a triangular arrangement typical for antiferromagnetic interchain interaction J′.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号