首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Seven oxides ACu3M7O21 have been isolated with A = K, Rb, Tl, Cs for M = Ta and A = K, Rb, Cs for M = Nb. These phases are orthorhombic: a ? 28 Å, b ? 7.50 Å, and c ? 7.55 Å, probable space group Cmmm. Their structure has been established from an X-ray diffraction study and from high-resolution microscopy observations. The structure consists of an intergrowth of single hexagonal tungsten bronze AM3O9 slices and double distorted perovskite Cu3M4O12 slabs (M = Nb, Ta) in which copper has a square coordination. The host lattice of these compounds can be considered as the member “n = 1; n′ = 2” of a series of intergrowths corresponding to the formulation |M3O9|Hn|M2O6|Pn.  相似文献   

2.
Perovskites of the type A2+3B2+M5+2O9, where A2+ = Ba, Sr; B2+ = Mn, Co, Ni, Zn; M5+ = Nb, Ta, show order-disorder phenomena. At lower temperatures a thermodynamically unstable disordered cubic perovskite is formed (13 formula unit—AB13M23O3—in the cell), which transforms irreversibly into a 1: 2 ordered high-temperature form with 3L structure (sequence (c)3). For A2+ = Ba this lattice is hexagonal (space group P3m1; one formula unit in the cell); with A2+ = Sr a triclinic distortion is observed. For Ba3CoNb2O9 a second transformation into a cubic disordered perovskite takes place at 1500°C. This transition is reversible and of the order-disorder type. The vibrational and diffuse reflectance spectra are discussed.  相似文献   

3.
Single crystals of a new compound, FeV2O6H0.5, have been obtained by hydrothermal synthesis at 650°C and 2 kbar. An electron microprobe analysis indicated that the chemical formula is FeV2O6. This compound has an orthorhombic symmetry, space group P212121 with Z = 4. The unit cell dimensions are
a = 4.891 A?, b = 9.553 A?, c = 8.786 A?
These parameters are related to a′, b′, c′ of the diaspore-type VO2 by the relations: a ? a′, b ? b′, c ? 3c′. The structure, based on single crystal data, has been determined from Patterson and Fourier syntheses. A structural refinement gave a final R-factor of 2.4%. The new structure can be deduced from that of the diaspore-type VO2, by displacement of one third of the cations from an octahedral site to an adjacent unoccupied tetrahedral site, which is located in a channel parallel to the c axis. The calculation of the cation and oxygen valences indicated that some O2? were in fact OH?. This conjecture was supported by thermogravimetric analysis. The chemical formula was indeed Fe3+2V3+V4+V5+2O11(OH). Some intensities of the powder diffraction lines changed strongly when the preparation temperature was reduced from 650°C to 300°C. This was explained by an increase of the hydrogen ratio in the formula FeV2O6Hx, which implies a structural change. The different phases FeV2O6Hx can be considered as solid solutions between two extreme phases with different structure: one with the present one and the other with a diaspore-type structure.  相似文献   

4.
A new family of eight germanate phases, A2MGe5O12: A = Rb, Cs; M = Be, Mg, Co, Zn, has been synthesized. They are cubic with a in the range 13.7 to 14.0 Å, Z = 8, and space group I43d. These phases, named the β phases, are isostructural with KBSi2O6 which has a structure related to that of pollucite, CsAlSi2O6. The structure of one, Rb2ZnGe5O12, has been refined to an R value of 0.079 using X-ray powder diffraction data. Several of the new phases are polymorphic. Cs2ZnGe5O12, Cs2CoGe5O12, and Rb2MgGe5O12 form low-temperature, δ polymorphs which have primitive cubic unit cells. Rb2ZnGe5O12 forms a low-temperature, ε polymorph which is probably a tetragonal distortion of the β structure.  相似文献   

5.
The isothermal decomposition of any ternary oxide AxByOz on liberation of n moles of oxygen at a constant pressure is found to be driven by the mixing entropy ΔSm = ?nRln PO2 of the total entropy change ΔS = ΔS° + ΔSm. The stability of AxByOz towards isothermal decomposition into a biphasic solid mixture is derived from the equilibrium condition ΔG1 = 0 as functions of standard changes ΔH° and ΔS°. Assuming ΔS° = 44n and calculating ΔH° in terms of lattice energies U(ABO3) and U(A2O3), the stability of perovskites St(ABO3) = ?log P1O2 (A = La, Sm, Dy; B = Mn, Fe) is given as a function of the ionic radius of the A3+ ion. The calculated stability agrees well with that observed. The effect of electronic entropy change ΔSe on ΔS° is demonstrated for AFeO3 (A = La, Sm, Dy).  相似文献   

6.
The magnetic interaction in the structural units [Fe2O7]8?, built of two corner-sharing FeO4 tetrahedra, in Na8Fe2O7 (Na2OFe2O3 = 41) has been studied by magnetic susceptibility measurements (4.2–500 K). An exchange integral JKB of ?37 K is obtained by comparison of the experimental values and the calculated ones using a Heisenberg-Dirac-Van Vleck-type Hamiltonian ? = ?2JS?1S?2. The hypothesis of magnetically isolated [Fe2O7]8? groups is corroborated by Mössbauer spectroscopy between 1.5 and 77 K. The susceptibility measurements of the solid solutions Na8Fe2?xMxO7 (M = Al, Ga; 0 ≤ x ≤ 0.2 for Al; 0 ≤ x ≤ 2 for Ga) leads to the same conclusion of the existence of isolated Fe3+Fe3+ pairs in Na8Fe2O7. The type of substitution of Fe by Al or Ga is determined; homonuclear Fe3+Fe3+ and M3+M3+ pairs and heteronuclear Fe3+M3+ pairs are formed.  相似文献   

7.
The reactions (I) Hg2Cl2(s) + Br2(g) and (II) HgCl2(s) + HgBr2(s) have been investigated by an X-ray method. Both the reactions yield two forms of the mixed halide HgClBr, designated as α-HgClBr and β-HgClBr. The cell parameters of the two are as follows:α-HgClBr: a = 6.196 A?, b = 13.12 A?, c = 4.37 A?, z = 4, ? = 5.91 g/cm3. The powder pattern and cell parameters are similar to that of HgCl2. Therefore it is probable that the chlorine atoms, in the linear halogenHghalogen molecules of HgCl2 structure have been replaced by bromines, and since the radius of the bromine atom is larger than that of chlorine, the lattice is larger in this case.β-HgClBr: a = 6.78 A?, b = 13.175 A?, c = 4.17 A?, z = 4, ? = 5.40. These parameters are the same as those reported in the literature for β-Hg(ClBr)2, and its X-ray powder pattern is similar to HgCl2. Therefore this phase also has linear halogenHghalogen molecules but the distribution of Cl and Br atoms is perhaps random.Heating the products (I) and (II) up to the melting point increases the amount of α phase and decreases the β phase, whereas crystallization increases the β phase. DTA study has supported the X-ray findings.  相似文献   

8.
The room temperature structures of the five layer Aurivillius phases A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb) have been refined from powder neutron diffraction data using the Rietveld method. The structures consist of [Bi2O2]2+ layers interleaved with perovskite-like [A2Bi2Ti5O16]2− blocks. The structures were refined in the orthorhombic space group B2eb (SG. No. 41), Z=4, and the unit cell parameters of the oxides are a=5.4251(2), b=5.4034(1), c=48.486(1); a=5.4650(2), b=5.4625(3), c=48.852(1); a=5.4988(3), b=5.4980(4), c=50.352(1); a=5.4701(2), b=5.4577(2), c=49.643(1) for A=Ca, Sr, Ba and Pb, respectively. The structural features of the compounds were found similar to n=2-4 layers bismuth oxides. The strain caused by mismatch of cell parameter requirements for the [Bi2O2]2+ layers and perovskite-like [A2Bi2Ti5O16]2− blocks were relieved by tilting of the TiO6 octahedra. Variable temperature synchrotron X-ray studies for Ca and Pb compounds showed that the orthorhombic structure persisted up to 675 and 475 K, respectively. Raman spectra of the compounds are also presented.  相似文献   

9.
The structure of two new oxides KCuTa3O9 and KCuNb3O9 has been solved from X-ray powder data and by electron microscopy. Both compounds are orthorhombic, space group Pnc2 with a ? 8.8 Å, b ? 10.1 Å, and c ? 7.6 Å. Their host lattice is built up from corner-sharing MO6 octahedra (M = Nb, Ta) forming pentagonal tunnels where the K+ ions are located. The copper ions are located in distorted perovskite CaCu3Mn4O12-type cages and exhibit a square planar coordination. The relationships between these oxides and the TTB, HTB, ITB, and Ba0.15WO3 structures are discussed.  相似文献   

10.
Profile analysis of high-resolution, powder neutron-diffraction data was used to refine the previously reported structures of the ordered, distorted perovskites Ba2LaRuO6 and Ca2LaRuO6. Low-temperature neutron diffraction experiments showed that, at 2K, the former is a Type IIIa antiferromagnet while the latter is Type I. Both compounds have an ordered magnetic moment of μRu ? 1.95μB per Ru5+ ion. The Néel temperature of Ba2LaRuO6 was determined to be 29.5K, and the covalent mixing between the ruthenium and nearest-neighbor anions is described by A2π = 8.2 ± 1% for Ba2LaRuO6 and 8.6 ± 1% for Ca2LaRuO6. The ionic radius of a Ru5+ ion is 0.56 Å. These data are consistently interpreted within the framework of a strongly correlated, half-filled π1 band. Extension of this interpretation to the magnetic data for the perovskites CaRuO3 and SrRuO3 leads to a fundamental theoretical prediction.  相似文献   

11.
The crystal structure of SnC2O4 has been determined by X-ray single-crystal techniques and refined to R = 0,018 for 1139 reflections. The cell is monoclinic, space group C2c with Z = 4 formula units, the parameters being a = 10,375(3)Å. b = 5,504(2)Å, c = 8,234(3)Å, β = 125,11(2)°. The oxalato groups, located on symmetry centers, are chelated to two Sn atoms through one oxygen on each carbon atom, giving rise to an infinite string (SnC2O4)n. The Sn(II) atom is one-side bonded to four oxygen atoms with two SnO bonds of 2,232(2) Å and two of 2,393(2) Å. The tin atom is in a distorted trigonal bipyramid SnO4E, the lone pair E occupying one of the apices of the equatorial trigonal base of the polyhedron. Crystal structure comparison with disodium bisoxalatostannate(II), Na2Sn(C2O4)2, permits one to deduce SnC2O4 by crystallographic shear operation 18[342](001) of c2 periodicity. Na2Sn(C2O4)2 can be described as an intergrowth of SnC2O4 and Na2C2O4 structures and consldered as the first member of a new series Na2Sn1+n(C2O4)2+n with n integer ? 0.  相似文献   

12.
The spinels of the system LixMn1?xV2O4 (0 ? x ? 1) have been prepared at 700–750°C from LiV2O4 and MnV2O4. The lattice constants decrease linearly with increasing x. In the region x>0.75, the d-electrons of V should be delocalized as the VV distances are lower than the critical VV separation of 2.94 Å. Experimentally, the samples with x>0.6 show no IR absorption bands and the Seebeck coefficient is near zero. The Seebeck coefficient can be described with a model of intermediate polarons and can be expressed by the equation Θ = 198 log [1 + (1 ? x)5x].  相似文献   

13.
Fe2P4O12 has been prepared and identified as an isotype of the other MII2P4O12 tetrametaphosphates (MII = Ni, Mg, Cu, Co, Mn, Cd). Its monoclinic unit cell:
a=11.952,b=8.359,c=9.932A?
β=118°76
contains 4 formula units. The space group is C2c. For tetrametaphosphates with MII = Ni, Mg, Cu, Co, and Mn we found a new denser phase induced at 80 kbar and 1000°C. In the case of Fe2P4O12 the unit cell of this new form is
a=9.777,b=8.994,c=4.968A?
β=107°22
with Z = 2 and two possible space groups Cc or 2Cc. This dense phase exists at ordinary pressure for the zinc salt.  相似文献   

14.
The reactions of the sulphite radical anion, SO3.?? (generated from the Ti3+-H2O2-Na2SO3 system at pH 9), in aqueous solutions with some nitroalkane compounds were investigated by using a rapid-mixing flow technique coupled with electron spin resonance (ESR) which can detect the radicals having a lifetime of 5–100 ms. The SO3.?? radical added to the double bond of CN in the nitroalkane aci-anions which are the main form of nitroalkanes in aqueous alkaline solutions. From the observed hyperfine splitting constants of the SO3.?? adducts of nitroalkane aci-anions, the preferred conformation of the adducts was deduced.  相似文献   

15.
The structural and magnetic properties of the Pr1?xMn1+xO3 perovskites were studied. The increase of x (i.e., PrMn < 1) leads to the decrease of the orthorhombic deformation and of the Néel temperature and, simultaneously, to an increase of the ferromagnetic contribution. The latter effect is explained from the suggested distribution of the cations (Pr3+1?xMn2+x)A(Mn3+1?xMn4+x)O2?3 by the double exchange of Mn3+Mn4+ pairs at the B—sublattice.  相似文献   

16.
The high-temperature form of NaFeP2O7 crystallizes in the monoclinic P21c space group with a = 7.3244(13), b = 7.9045(7), c = 9.5745(15), Å, β = 111.858(13)°, and Z = 4. The structure has been refined from 3842 reflections leading to R = 0.040 and Rw = 0.047. The structure of II-NaFeP2O7 can be described by alternately stacking layers containing the FeO6 octahedra and layers formed by the P2O7 groups, parallel to (001). Elongated cages are formed where two Na+ ions are located. The structure is compared with that of KAlP2O7. Both structures are built up from blocks of three polyhedra, [FeP2O11] or [AlP2O11], including a small OoctOtetOoct angle. These blocks are connected in such a way that several types of tunnels appear in each structure.  相似文献   

17.
Two original compounds, Ln4?2xBa2+2xZn2?xO10?2x, were isolated for Ln = La, Nd and 0 ≤ x ≤ 0.25. These oxides are tetragonal with a and c parameters close to 6.91 and 11.59 Å, respectively, for lanthanum, and 6.75 and 11.54 Å for neodymium. The structure of these phases was determined from X-ray powder patterns in the most symmetric space group, I4mcm, using Patterson and Fourier functions for x = 0. The structure should be compared to that of copper oxides La4?2xBa2+2xCu2?xO10?2x: it is built up of identical Ln2O5 layers formed from face- and edge-sharing LnO8 polyhedra, between which Ba2+ and Zn2+ ions are inserted. Contrary to the copper compounds, two successive Ln2O5 layers are rotated by 90°, involving a doubling of c. The result for Zn2+ is tetrahedral coordination, while the coordination of Ba2+ becomes a bicapped antiprism.  相似文献   

18.
Nickelates ANiO3 (A=Pr, Nd, Sm, Lu, Y, Tl) containing Mössbauer probe 57Fe atoms were synthesized. In the case of nickelates with larger rare earth (A=Pr, Nd, Sm) the Mössbauer spectra confirm that ferric ions are located in single type of crystallographic positions. On the contrary, the spectra of ANi0.98Fe0.02O3 with small cations (A=Lu, Y, Tl) can be described as a superposition of two sub-spectra which indicate that 57Fe probe atoms are simultaneously stabilized in two non-equivalent crystallographic positions. These results have been interpreted in terms of partial charge disproportionation of Ni3+ cations associated with the electronic localization in monoclinic distorted Lu, Y, Tl nickelates. The modification of 57Fe spectra for TlNi0.98Fe0.02O3 as a function of temperature has shown that this charge disproportionation occurs in varying degrees, corresponding to the charge states Fe(3+σ)+ and Fe(3−σ′)+. On the contrary, the spectra for Lu and Y nickelates show that charge variation (σ,σ′) for dopant Fe(1) and Fe(2) cations does not depend on temperature.  相似文献   

19.
Profile analysis of constant-wavelength powder neutron diffraction data has been used to refine the crystal structure of the ordered perovskite Ca2YRuO6. The material is monoclinic (space group P21n) with a disordered arrangement of calcium and yttrium on the A site and one of the B sites, such that the formula is best written as Ca1.43Y0.57[(Ca0.57Y0.43)Ru]O6. Low-temperature neutron diffraction experiments showed that the material is a Type I antiferromagnet at 2.5 K with an ordered magnetic moment of 1.2(1)μB per Ru5+. It is suggested that the dominant factor in determining the electronic properties of the series M2+2X3+Ru5+O6 (M = Ca, Sr, Ba; X = La, Y) is the Ru-Ru separation distance.  相似文献   

20.
The crystal structure of Na7Mg4.5(P2O7)4 has been solved by direct methods from the three-dimensional X-ray data. The space group is P1. The crystal structure consists of Mg2+, Na+, and P2O4?7 ions. One magnesium atom at symmetry center (0,0,0) and two sodium atoms at ±(?0.0421, ?0.0596, 0.2230) display occupation factors 0.5 each. A short interatomic distance between these Na+ and Mg2+ ions (1.80 ± 0.01 Å) excludes the occupation of both sites in the same unit cell. The crystal structure of Na7Mg4.5(P2O7)4 consists of unit cells containing Na8Mg4(P2O7)4 or Na6Mg5(P2O7)4 with a statistical occurrence 1:1.Each Mg2+ ion is octahedrally coordinated by six O2? ions at distances 1.979 – 2.270 Å. The coordination polyhedra around the Na+ ions are ill-defined. The bond angles POP in the P2O4?7 groups are 126.6 and 133.6° (±0.3°). The final reliability factor R is 7.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号