首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N fertilization is considered as a main source of N2O and NO emission from agricultural soils. Especially, it is a great challenge to enhance urea efficiency without any deleterious effects on the environment because of massive application of urea. In this study, we attempted to stabilize urea in the interlayer space of montmorillonite (MMT) in order to reduce urea loss from soils. Urea was successfully intercalated in the form of urea–magnesium complexes. The stabilization of urea–magnesium complexes within the interlayer space was confirmed by a significant expansion of the interlayer space and the presence of urea–magnesium complexes. Urea degradation in soils was significantly delayed by application of the urea–magnesium complex intercalated into MMT. It is highly feasible that stabilization of urea within nanosized interlayer space would lead to considerable improvement of nitrogen efficiency in soils.  相似文献   

2.
The manipulation of the Goos–Hänchen (GH) shifts of the reflected and transmitted probe beams through a cavity containing ?-configuration artificial or realistic atomic medium is investigated. Adjusting the coherent control fields of atomic medium, the electromagnetically induced transparency with amplification (EITA) can be yielded. When the frequency of probe beam is around EITA, the negative as well as positive GH shifts of the reflected and transmitted probe beams can be greatly enhanced by EITA. Meantime, the GH shift can be switched between the considerably large positive and negative values by adjusting the collective phase of the external fields.  相似文献   

3.
Carbon materials of boron content ranging from 0.6 to 4 wt.% were synthesized by co-pyrolysis of QI-free coal–tar pitch with the borane–pyridine complex. The growing amount of boron introduced into the carbonaceous material is associated with an increase in nitrogen content and a progressive degradation of structural and textural ordering. The structural variations of the boron-doped materials on heat treatment up to 2500 °C were monitored using X-ray diffraction and X-ray photoelectron spectroscopy. The intrinsic boron acts effectively as a catalyst of graphitization above 2100 °C. The carbonaceous material with boron content of about 1.5 wt% shows the highest degree of structural ordering after thermal treatment. A high amount of oxygen was found in the graphitized boronated carbons, proving that the incorporated boron induces a strong chemisorption activity of the material when exposed to air. For a series of cokes calcined at 1000 °C, the most striking effect of increasing the boron content is an increase of irreversible capacity Xirr from 0.2 to 0.7. The reversible capacity (Xrev) amounts to about 1, with a slight tendency to decrease with the boron content. Upon increasing the temperature up to 2500 °C, Xirr decreases to about 0.1 in the graphitic carbons, while Xrev reaches a minimum of 0.4–0.5 at 1700 °C and next increases to a value close to 1 at 2500 °C. In the boron doped graphite, Xirr has a slight tendency to increase with the boron content, due to the simultaneous presence of nitrogen in these materials and their strong affinity for oxygen from the atmosphere.  相似文献   

4.
The EcoRI restriction endonuclease requires one divalent metal ion in each of two symmetrical and identical catalytic sites to catalyse double-strand DNA cleavage. Recently, we showed that Cu2+ binds outside the catalytic sites to a pair of new sites at H114 in each sub-unit, and inhibits Mg2+-catalysed DNA cleavage. In order to provide more detailed structural information on this new metal ion binding site, we performed W-band (~94 GHz) and X-band (~9.5 GHz) electron spin resonance spectroscopic measurements on the EcoRI–DNA–(Cu2+)2 complex. Cu2+ binding results in two distinct components with different gzz and Azz values. X-band electron spin echo envelope modulation results indicate that both components arise from a Cu2+ coordinated to histidine. This observation is further confirmed by the hyperfine sub-level correlation results. W-band electron nuclear double resonance spectra provide evidence for equatorial coordination of water molecules to the Cu2+ ions.  相似文献   

5.
This paper reports the heterogeneously doped alumina (Al2O3) on the ionic conductivity of thallium iodide. Composite materials of formula (1 − x) TlI–xAl2O3, x = 0–0.7 have been prepared and studied by X-ray diffraction, differential scanning calorimetry, and electrical conductivity. X-ray diffraction and differential scanning calorimetry proved the formation of composite in this binary system. The maximum enhancement observed is about three orders of magnitude with respect to the host material. The enhancement of electrical conductivity in comparison with pure thallium iodide can be interpreted with the space charge layer model. Moreover, the increased content of alumina in the system leads to the disappearance of phase transition β–α thallium iodide, which is usually observed in the pure compound. This behavior was explained by stabilizing effect of β-phase at high temperatures and suppression of α-phase at higher contents of alumina.  相似文献   

6.
The Hebb–Wagner polarization method with the electron blocking electrode has been discussed in this paper in aim to determine a partial ionic conductivity of Sr-doped lanthanum manganite. The “limiting current” in the proposed system was measured using the two-point DC technique with additional Pt electrode between LSM and blocking electrode. The electrochemical model based on bulk diffusion processes and Boltzmann statistics has been also described. The ionic conductivity calculated with the use of proposed model for La0.7Sr0.3MnO3+δ was 5.3×10−4 S cm−1 at 800 °C and the activation energy of ionic conductivity was found to be (0.60±0.02) eV. This result is in agreement with previous literature reports and indicates the workability of the modified Hebb–Wagner system.  相似文献   

7.
Optical emission spectroscopy and Langmuir probe are used to investigate the low pressure inductively coupled Ar–N2 plasmas as function of rf power, filling pressure and Ar content in N2 discharge. It is observed that the active species generation, dissociation fraction and electron temperature significantly depends on discharge parameters and may be used to optimize the plasma reactor. Mixture of SWCNTs and MWCNTs are treated for different treatment time (0–120 min) at optimum discharge conditions. Changes induced in the elemental composition, surface morphology, crystallographic structure, and structural disorder in the plasma irradiated CNTs are analyzed by EDX, FTIR, SEM, XRD and Raman spectroscopy, respectively. Ar–N2 mixture plasma treatment of CNTs lead to a significant increase in the electrical conductivity, modify the microstructure and induce structural disorder and cause a transition of crystalline phase from well crystalline to an amorphous structure.  相似文献   

8.
A new experimental method for the determination of the Landau–Lifshitz damping parameter, αα, based on measurements of the frequency and field dependence of the complex magnetic susceptibility, χ(ω,H)=χ(ω,H)-iχ(ω,H)χ(ω,H)=χ(ω,H)-iχ(ω,H), is proposed. The method centres on evaluating the ratio of fmax/fres, where fres is the resonance frequency and fmax is the maximum absorption frequency at resonance, of the sample susceptibility spectra, measured in strong polarizing fields. We have investigated three magnetic fluid samples, namely sample 1, sample 2 and sample 3. Sample 1 consisted of particles of Mn0.6Fe0.4Fe2O4 dispersed in kerosene, sample 2 consisted of magnetite particles dispersed in Isopar M and sample 3 was composed of particles of Mn0.66Zn0.34Fe2O4 dispersed in Isopar M  . The results obtained for the mean damping parameter of particles within the magnetic fluid samples are as follows: 〈α(Mn0.6Fe0.4Fe2O4)〉=0.057α(Mn0.6Fe0.4Fe2O4)=0.057 with the corresponding standard deviation SD=0.0104SD=0.0104; 〈α(Fe3O4)〉=0.1105α(Fe3O4)=0.1105 with the corresponding standard deviation, SD=0.034SD=0.034 and 〈α(Mn0.66Zn0.34Fe2O4)〉=0.096α(Mn0.66Zn0.34Fe2O4)=0.096 with the corresponding standard deviation, SD=0.037SD=0.037.  相似文献   

9.
We have studied the absorption and fluorescence spectra of Malachite Green and Crystal Violet in aqueous and alcoholic-aqueous solutions in which nanoparticles from Ln(III) and Sc(III) diketonates are formed at concentrations of complexes in a solution of 5–30 μM. We have shown that, if the concentrations of the dyes in the solution are lower than 0.5 μM, dye molecules are incorporated completely into nanoparticles or are precipitated onto their surface. The fluorescence intensity of these incorporated and adsorbed Malachite Green and Crystal Violet molecules increases by several orders of magnitude compared to the solution, which takes place because of a sharp increase in the fluorescence quantum yields of these dyes and at the expense of the sensitization of their fluorescence upon energy transfer from β-diketonate complexes entering into the composition of nanoparticles. We have shown that, if there is no concentration quenching, the values of the fluorescence quantum yield of the Crystal Violet dye incorporated into nanoparticles and adsorbed on their surface vary from 0.06 to 0.13, i.e., are close to the fluorescence quantum yield of this dye in solid solutions of sucrose acetate at room temperature. The independence of the fluorescence quantum yield of Crystal Violet on the morphology of nanoparticles testifies to a high binding constant of complexes and the dye. The considerable fluorescence quantum yields of triphenylmethane dyes in nanoparticles and sensitization of their fluorescence by nanoparticle-forming complexes make it possible to determine the concentration of these dyes in aqueous solutions by the luminescent method in the range of up to 1 nM.  相似文献   

10.
Modification of the metal complexes by the laser irradiation with different wavelength and beam quality is investigated. After irradiation, the structure of macromolecular metal complexes are changed, and the reducing metal crystal nucleus emerges.. In this paper, the surface of the metal complexes is irradiated by laser scanning with wavelengths of 532 nm, 1064 nm and 10.6 μm.The 1064nm laser performs the most favorably by using Scanning Electron Microscope and X-ray Photoelectron Spectroscopy. Because the change of chemical composition percentage and variation of metal chemical valence state is most evident. Furthermore, mode selection of laser cavity by adding a pinhole aperture further improves the surface topography, fineness of modification and reducing ability. The appropriate wavelength and mode selection should be utilized together with other influencing laser parameters to achieve the most favorable consequence of metal complexes surface modification.  相似文献   

11.
Strontium titanate(STO)is an n-type oxide thermoelectric material,which has shown great prospects in recent years.The doping of La and Nb into STO can improve its power factor,whereas its thermal conductivity is still very high.Thus,in order to obtain a high thermoelectric figure-of-merit z T,it is very important to reduce its thermal conductivity.In this paper,using a combination of a hydrothermal method and a high-efficiency sintering method,we succeed in preparing a composite of pure STO and La Nb-doped STO,which simultaneously realizes lower thermal conductivity and higherSeebeck coefficient,therefore,the thermoelectric properties of STO are significantly improved.In the SrTiO_3/La Nb–SrTiO_3 bulk samples,the lowest thermal conductivity is 2.57 W·m~(-1)·K~(-1)and the highest z T is 0.35 at 1000 K for the STO/La_(10)Nb_(20)–STO sample.  相似文献   

12.
We present our recent study of microscopic single-molecule imaging on the artificial complex of tetramethylrhodamine linked with a propyl chain onto silica glass surface, i.e. an asymmetric fluorescence resonance energy transfer (FRET) structure with non-radiative acceptor. In the synthesis of the complex, we used a mixture of two kinds of isomers to introduce rather small photodynamic difference among them. This isomeric structure change will provide more or less a distinctive photophysical change in e.g. non-radiative relaxation rate. Our recent observation at room temperatures, so far, shows that such contributions can be discriminated in the histograms of the fluorescent spot intensities; broad but distinctive multi-components appear. To identify the isomeric difference as a cause of structures, some configurational assumptions are necessary. One such basic prerequisite is that the transition dipoles of the chromophores should be oriented almost parallel to the glass surface. In order to make clear the modeling, we also provide preliminary experiments on the polarization dependence of the imaging under rotating polarization in epi-illumination.  相似文献   

13.
This study demonstrates that humidity, temperature, and the interlayer anions influence ionic conductivities of Mg–Al layered double hydroxides (LDHs) intercalated with inorganic anions. Results show that Mg–Al LDH intercalated with Br? exhibited the highest ionic conductivity among Mg–Al LDHs intercalated with CO32?, Cl?, Br?, NO3? and SO42?. Its ionic conductivity was 1.1 × 10? 2 S cm? 1 at 80 °C under 80% relative humidity. The electromotive force for the hydroxide ion concentration cell using Mg?Al CO32? LDH showed the same behavior with that using an anion exchange membrane, indicating that Mg–Al CO32? LDH can be a hydroxide ion conductor.  相似文献   

14.
A. K. Nath  A. Kumar 《Ionics》2014,20(12):1711-1721
Swift heavy ion (SHI) irradiation has been used as a tool to enhance the electrochemical properties of ionic liquid-based nanocomposite polymer electrolytes dispersed with dedoped polyaniline (PAni) nanorods; 100 MeV Si9+ ions with four different fluences of 5?×?1010, 1?×?1011, 5?×?1011, and 1?×?1012 ions cm?2 have been used as SHI. XRD results depict that with increasing ion fluence, crystallinity decreases due to chain scission up to fluence of 5?×?1011 ions cm?2, and at higher fluence, crystallinity increases due to cross-linking of polymer chains. Ionic conductivity, electrochemical stability, and dielectric properties are enhanced with increasing ion fluence attaining maximum value at the fluence of 5?×?1011 ions cm?2 and subsequently decrease. Optimum ionic conductivity of 1.5?×?10?2 S cm?1 and electrochemical stability up to 6.3 V have been obtained at the fluence of 5?×?1011 ions cm?2. Ac conductivity studies show that ion conduction takes place through hopping of ions from one coordination site to the other. On SHI irradiation, amorphicity of the polymer matrix increases resulting in increased segmental motion which facilitates ion hopping leading to an increase in ionic conductivity. Thermogravimetric analysis (TGA) measurements show that SHI-irradiated nanocomposite polymer electrolytes are thermally stable up to 240–260 °C.  相似文献   

15.
A study is made of the electrophysical properties (Ns, eff) of ionic alloys of GaAs obtained by implanting 150-keV Zn ions at 20 and 300°C. The ion dose D=5·1013–1016 ions/cm2; the alloys were subsequently annealed for 10 min in an H2 atmosphere with temperatures in the range 500–1000°C. The optimal parameters of the ionic alloys are obtained for Ti=300°C and Ta=700°C. Thermal acceptance of the GaAs under a SiO2 film (d0.2–0.3 m) is observed for Ta>700°C. The limiting concentration of thermal acceptors Ns(TA)3·1013 cm–2) for T=1000°C and t=10 min.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 22–26, March, 1979.  相似文献   

16.
We study the mechanism of large lateral shift effect in a prism-waveguide coupling system where the guiding layer is composed of biaxially anisotropic metamaterial (BAM). We make use of stationary-phase approach to calculate the GH shift with different thickness of coupling layer and guiding layer, permittivity of coupling layer and imaginary parts of permittivity of BAM. Simulation results show that by the change of the above parameters, GH shift can be modulated sensitively. The physical explanation is given about these phenomenons and the proposed prism-waveguide system with BAM can be designed to realize different functions, such as thickness measurement, refractive index testing and absorption detection.  相似文献   

17.
Amit S. Tiwary 《Molecular physics》2013,111(19):2063-2070
Of the four plausible isomeric structures of the mesitylene–ICl charge transfer (CT) complex, the most feasible one was determined by a detailed ab initio and DFT study at the HF, B3LYP and MPW1PW91 levels using the 6-31++G(d,p) basis set. Potential energy surface scans followed by frequency calculation and full optimization revealed that the I–Cl bond, with its I atom oriented towards the aromatic ring, stands vertically above an unsubstituted C-atom, being inclined at about 6° to the C 3-axis. Complexation increases the I–Cl bond length. Correction for basis set superposition error through a counterpoise calculation yields a binding energy close to the experimental value. The electronic CT transition energy ( CT) with this ground-state structure as input was calculated in vacuo by the CIS method and in carbon tetrachloride medium by the TDDFT method under the polarizable continuum model. In a similar way the values of CT were calculated for complexes of ICl with p-xylene, durene and hexamethylbenzene. Throughout the series of methylbenzene complexes, the TDDFT-calculated values of CT were less than the experimental values and such underestimation may be attributed to the inherent difficulties of DFT to take into account long-range interactions. However, the trend of the variation of CT with the number and position of methyl groups in the series was reasonably similar to the trend followed by the experimental CT transition energies.  相似文献   

18.
19.
The age-hardenable Ti–5Fe–5Zr (wt. %, 5Zr) alloy has been consolidated by pulsed electric current sintering, following a β solution treatment, and the results are compared with a Ti–5Fe (0Zr) alloy. The precipitation sequence measured at 640°C ageing is β?+?athermal ω?→?β?+?isothermal ω?→?β?+?α. At the peak hardness isothermal ω phase forms at 20?s of ageing. The Zr addition retards the precipitation kinetics of the α phase; as a result, the α phase nucleates at latest at 300?s ageing in the overaged state. Fe is partitioned into β, while it is depleted from the α phases. There is Zr enrichment near the α/β interface when the α phase precipitates due to a solute drag effect; the growth rate of the α phase in the 5Zr alloy is significantly reduced compared with that in the 0Zr alloy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号