首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation of single-phase and catalytically active GaPd2 coatings was accomplished via DC magnetron sputtering using an intermetallic sputter target. Thin and uniform layers were deposited on borosilicate glass, Si(111) and planar as well as micro-structured stainless steel foils. The specimens were examined regarding their phase composition, film morphology and microstructure. Thin films of different layer thickness were catalytically characterized in the semi-hydrogenation of acetylene, which was conducted at 473 K and a feed gas composition of 0.5 vol.% C2H2, 5 vol.% H2 as well as 50 vol.% C2H4 in helium. Pre-reduction of the catalyst was found to be essential to enhance the catalytic selectivity. Sputtered GaPd2 showed a high selectivity of 73 % for the hydrogenation to ethylene at conversion levels above 80 %. The surface-specific activity was strongly increased to 8.97 molacetylene · (A0 · h)–1 compared to bulk- or nanoscale GaPd2 (1.93 and 0.30 molacetylene · (A0 · h)–1, respectively) caused by the high specific surface area of the thin films.  相似文献   

2.
We have performed all electron Hartree–Fock gradient calculations and geometry optimizations on systems composed of one to three palladium atoms and: CH3 cation and anion, C2H4, C2H3NH2, C4H4, NH3, and (NH3) + (C2H4). Several basis set considerations are discussed and the binding energies of Pd to these small molecules are reported. We find the counterpoise correction to the binding energies of these systems to be large. We also present MP2 calculations of the palladium binding energy with a large uncontracted palladium spd basis set in the PdC2H4 and PdNH3 systems. The binding interaction between ethylene and palladium results in a mixing of the 4d–π* and 5s–π orbitals, and, is dissociative to the ethylene. The palladium-butadiene and palladium-cyclobutene relative stabilites and structures are interesting since these molecules could form from acetylene on a palladium surface. We find the Pd-butadiene cyclic structure to be 43 kcal/mol more stable than the Pd-cyclobutene product.  相似文献   

3.
Rate constants of Br atom reactions have been determined using a relative kinetic method in a 20 l reaction chamber at total pressures between 25 and 760 torr in N2 + O2 diluent over the temperature range 293–355 K. The measured rate constants for the reactions with alkynes and alkenes showed dependence upon temperature, total pressure, and the concentration of O2 present in the reaction system. Values of (6.8 ± 1.4) × 10?15, (3.6 ± 0.7) × 10?14, (1.5 ± 0.3) × 10?12, (1.6 ± 0.3) × 10?13, (2.7 ± 0.5) × 10?12, (3.4 ± 0.7) × 10?12, and (7.5 ± 1.5) × 10?12 (units: cm3 s?1) have been obtained as rate constants for the reactions of Br with 2,2,4-trimethylpentane, acetylene, propyne, ethene, propene, 1-butene, and trans-2-butene, respectively, in 760 torr of synthetic air at 298 K with respect to acetaldehyde as reference, k = 3.6 × 10?12 cm3 s?1. Formyl bromide and glyoxal were observed as primary products in the reaction of Br with acetylene in air which further react to form CO, HBr, HOBr, and H2O2. Bromoacetaldehyde was observed as an primary product in the reaction of Br with ethene. Other observed products included CO, CO2, HBr, HOBr, BrCHO, bromoethanol, and probably bromoacetic acid.  相似文献   

4.
The high-temperature reaction between sulfur dioxide and acetylene in an excess of argon was studied in a 1?in. i.d. single-pulse shock tube. Mixtures ranging from 1.81% to 5.40% SO2 and 1.60% to 4.90% C2H2 were heated to reflected shock temperatures of 1550°–2150°K, for dwell times of about 0.6 msec and gas dynamically quenched. Total reaction densities were 0.89 to 5.4 × 10?2 moles/1. The reaction products were analyzed by gas chromatography. A technique was developed for separating Ar, C2H4, C2H2, SO2, CO, CO2, H2S, COS, and CS2. The major products of the reaction are CO, H2, CS2, and sulfur. The products observed were compared with those predicted on the assumption that equilibrium was attained. Several preliminary experiments were carried out with ethylene-sulfur dioxide mixtures, and the results indicated that for this combination the sulfur dioxide probably reacted with the acetylene generated from the decomposition of the ethylene, rather than directly with the ethylene. The rate of decline in the sulfur dioxide content in C2H2-SO2 mixtures was found to be approximately second order (total) and can be empirically represented by A mechanism is proposed to account for the overall reaction kinetics.  相似文献   

5.
The inhibiting effects of CO and N2 on the ability of the nitrogenase iron–molybdenum cofactor (FeMoco) to catalyze acetylene reduction outside the protein were studied to obtain data on the mechanism of substrate reduction at the active center of the enzyme nitrogenase. It was found that CO and N2 reacted with FeMoco that was separated from the enzyme and reduced by zinc amalgam (E = –0.84 V with reference to a normal hydrogen electrode (NHE)) (I) or europium amalgam (E = –1.4 V with reference to NHE) (II). In system I, CO reversibly inhibited the reaction of acetylene reduction to ethylene with K i = 0.05 atm CO. In system II, CO inhibited the formation of the two products of C2H2 reduction in different manners: the mixed-type or competitive inhibition of ethylene formation with K i = 0.003 atm CO and the incomplete competitive inhibition of ethane formation with K i = 0.006 atm CO. The fraction of C2H6 in the reaction products was higher than 50% at a CO pressure of 0.05 atm because of the stronger inhibiting effect of CO on the formation of C2H4. A change in the product specificity of acetylene-reduction centers under exposure to CO was explained by some stabilization of the intermediate complex [FeMoco · C2H2] upon the simultaneous coordination of CO to the catalytic cluster. Because of this, the fraction of the many-electron reduction product (ethane) increased. The experimental results suggest that several active sites in the FeMoco cluster reduced outside the protein can be simultaneously occupied by substrates and (or) inhibitors. The inhibition of both ethane and ethylene formation by molecular nitrogen in system II is competitive with K i = 0.5 atm N2 for either product. That is, N2 and C2H2 as ligands compete for the same coordination site in the reduced FeMoco cluster. The inhibiting effects of CO and N2 on the catalytic behaviors of FeMoco outside the protein and as an enzyme constituent were compared.  相似文献   

6.
The catalyst for acetylene hydrochlorination with gaseous HCl at room temperature is prepared by mechanical pretreatment of K2PdCl4 in an acetylene atmosphere. The rate-determining step of the reaction is the chloropalladation of π-coordinated acetylene involving an HCl molecule. As a consequence, the replacement of HCl with DCl brings about a kinetic isotope effect of 2.8 ± 0.4, which differs substantially from that observed in the protodemetalation of the intermediate palladium(II) chlorovinyl derivative yielding vinyl chloride (6.8 ± 0.6).  相似文献   

7.
The screening of commercial nickel catalysts for methanation and a series of nickel catalysts supported on CeO2, γ-Al2O3, and ZrO2 in the reaction of selective CO methanation in the presence of CO2 in hydrogen-containing mixtures (1.5 vol % CO, 20 vol % CO2, 10 vol % H2O, and the balance H2) was performed at the flow rate WHSV = 26000 cm3 (g Cat)−1 h−1. It was found that commercial catalytic systems like NKM-2A and NKM-4A (NIAP-07-02) were insufficiently effective for the selective removal of CO to a level of <100 ppm. The most promising catalyst is 2 wt % Ni/CeO2. This catalyst decreased the concentration of CO from 1.5 vol % to 100 ppm in the presence of 20 vol % CO2 in the temperature range of 280–360°C at a selectivity of >40%, and it retained its activity even after contact with air. The minimum outlet CO concentration of 10 ppm at 80% selectivity on a 2 wt % Ni/CeO2 catalyst was reached at a temperature of 300°C.  相似文献   

8.
Samples of Pd/C and Pd–Ag/C, where C represents carbon nanofibers (CNFs), are synthesized by methane decomposition on a Ni–Cu–Fe/Al2O3 catalyst. The properties of Pd/CNF are studied in the reaction of selective hydrogenation of acetylene into ethylene. It is found that the activity of the catalyst in hydrogenation reaction increases, while selectivity decreases considerably when the palladium content rises. The obtained dependences are caused by the features of palladium’s interaction with the carbon support. At a low Pd content (up to 0.04 wt %) in the catalyst, the metal is inserted into the interlayer space of graphite and the catalytic activity is zero. It is established by EXAFS that the main share of palladium in catalysts of 0.05–0.1 wt % Pd/CNF constitutes the metal in the atomically dispersed state. The coordination environment of palladium atoms consists of carbon atoms. An increase in the palladium content in a Pd/CNF catalyst up to 0.3 wt % leads to the formation of highly dispersed (0.8–1 nm) Pd particles. The Pd/CNF samples where palladium is mainly in the atomically dispersed state exhibit the highest selectivity in the acetylene hydrogenation reaction. The addition of silver to a 0.1 wt % Pd/CNF catalyst initially probably leads to the formation of Pd–Ag clusters and then to alloyed Pd–Ag particles. An increase in the silver content in the catalyst above 0.3% causes the enlargement of the alloyed particles and the palladium atoms are blocked by a silver layer, which considerably decreases the catalytic activity in the selective hydrogenation of acetylene.  相似文献   

9.
The kinetics of ethylene oxidation by PdCl2 and CrO3 complexes supported on silica gel (300 K, closed batch reactor) and the adsorption of C2H4 by silica gel and metal complex reaction centers (M n ) were studied. A new version of the kinetic distribution method was applied to determine the rate constants of ethylene reactions with metal complexes with consideration for the equilibrium distribution of C2H4 among the reactor gas phase, silica gel, and M n . The rate constant of a first-order reaction with respect to Cr(VI) (k e) remained constant as [M n ] was increased up to 0.15 mol % with the absence of detectable ethylene adsorption by chromium(VI). In the case of Pd(II)/SiO2, strong ethylene adsorption by palladium(II) was found, and k e was an exponential function of [M n ]. This exponential function is indicative of an increase in the specific activity of Pd(II) with palladium concentration on SiO2. Taking into account the adsorption of ethylene (physisorption on SiO2 and chemisorption on Pd(II)), we found an analogy between the kinetic behaviors of Pd(II) in reactions with ethylene on silica gel and with ethylene and other hydrocarbons in solutions.  相似文献   

10.
The inhibiting effects of CO and N2 on the ability of the nitrogenase iron–molybdenum cofactor (FeMoco) to catalyze acetylene reduction outside the protein were studied to obtain data on the mechanism of substrate reduction at the active center of the enzyme nitrogenase. It was found that CO and N2 reacted with FeMoco that was separated from the enzyme and reduced by zinc amalgam (E = –0.84 V relative to a normal hydrogen electrode (NHE)) (I) or europium amalgam (E = –1.4 V relative to NHE) (II). In system I, CO reversibly inhibited the reaction of acetylene reduction to ethylene with K i = 0.05 atm CO. In system II, CO inhibited the formation of the two products of C2H2 reduction in different manners: the mixed-type or competitive inhibition was found for ethylene formation with K i = 0.003 atm CO and the incomplete competitive inhibition was found for ethane formation with K i = 0.006 atm CO. The fraction of C2H6 in the reaction products was greater than 50% at a CO pressure of 0.05 atm because of the stronger inhibiting effect of CO on the formation of C2H4. The change in the product specificity of acetylene-reduction centers under influence of CO was explained by some stabilization of the intermediate complex [FeMoco · C2H2] upon the simultaneous coordination of CO to the catalytic cluster. Because of this, the fraction value of ethane as a multielectron reduction product increased. The experimental results suggest that several active sites at the FeMoco cluster reduced outside the protein can be simultaneously occupied by substrates and (or) inhibitors. The inhibition of both ethane and ethylene formation by molecular nitrogen in system II is competitive with K i = 0.5 atm N2 for either product. That is, N2 and C2H2 as ligands compete for the same coordination site at the reduced FeMoco cluster. The inhibiting effects of CO and N2 on the catalytic behaviors of both isolated FeMoco and that in the enzyme were compared.  相似文献   

11.
Metallic palladium surfaces are highly selective in promoting the reductive hydrolysis of aromatic ethers in aqueous phase at relatively mild temperatures and pressures of H2. At quantitative conversions, the selectivity to hydrolysis products of PhOR ethers was observed to range from 50 % (R=Ph) to greater than 90 % (R=n ‐C4H9, cyclohexyl, and PhCH2CH2). By analysis of the evolution of products with and without incorporation of H218O, the pathway was concluded to be initiated by palladium metal catalyzed partial hydrogenation of the phenyl group to an enol ether. Water then rapidly adds to the enol ether to form a hemiacetal, which then undergoes elimination to cyclohexanone and phenol/alkanol products. A remarkable feature of the reaction is that the stronger Ph−O bond is cleaved rather than the weaker aliphatic O−R bond.  相似文献   

12.
The influence of the addition of different amounts of MeOH, H2O, and HCOOH on the activity of supported palladium catalyst in the copolymerization of CO with ethylene and the kinetic regularities of this reaction were studied for the first time. The maximum yield of the copolymer is attained when MeOH and H2O or HCOOH and H2O are simultaneously introduced into the reaction medium (toluene). The results obtained are consistent with the concepts about the role of protic agents in the formation of active intermediates and polymer molecules in the copolymerization of CO with ethylene in the presence of the homogeneous catalytic systems.  相似文献   

13.
Alkyl formates in the presence of water were rapidly decomposed to H2, CO2 and the corresponding alcohols using Ru3(CO)12 and KOAc as catalyst. Based on the hydrogen gas produced, a turnover rate as fast as 8446/h for ethyl formate at 140°C was observed. The catalyst system was also active for the decomposition of other alkyl formates. The rate of decomposition increased both with increasing amount of KOAc and with decreasing number of carbon atom in the alkyl group of the formate. In addition to Ru3(CO)12, several other transition metal complexes RuCl3, RuCl2(PPh3)3, Os3(CO)12, H2Os3(CO)10, RhCl3, and RhCl(PPh3)3, were active in the catalytic decomposition of alkyl formates, although their activities varied greatly. The Ru3(CO)12-KOAc system also catalyzed the reduction of nitrobenzene by HCOOEt-H2O to aniline in EtOH and to a mixture of N-phenylformamide and N-methyl-N-phenylformamide in HCOOEt. Under coditions the same as for the hydrogenation of nitrobenzene, ethylene styrene and cyclohexenone were reduced to the corresponding alkanes, whereas 1-hexene and 1-octene were isomerized to the corresponding 2-alkene products.  相似文献   

14.
The decomposition kinetics of ethylsilane under shock tube conditions (PT ca. 3100 torr, T ? 1080–1245 K), both in the absence and presence of silylene trapping agents (butadiene and acetylene) are reported. Arrhenius parameters under maximum butadiene inhibition are: log k(C2H5SiH3) = 15.14-64,769 ± 1433 cal/2.303 RT; log k(C2H5SiD3) = 15.29-66,206 ± 1414/2.303 RT. The uninhibited reaction is subject to silylene induced decomposition (63% lowest T -- 24% highest T). Major reaction products are ethylene and hydrogen, consistent with two dominant primary dissociation reactions: C2H5SiD3 → C2H5SiD + D2, ? ? 0.66; C2H5SiD3 → CH3CH = SiD2 + HD, ? ? 0.30. Minor products suggest several other less important primary processes: alkane elimination, ? ?0.02, and free-radical production via simple bond fission, ? ?0.02. An upper limit for the activation energy of the decomposition, C2H5SiH → C2H4 + SiH2, of E < 30 ± 4 kcal is established, and speculations on the mechanism of this decomposition (concerted or stepwise) with conclusions in favor of the stepwise path are made. Computer modeling studies for the reaction both in the absence and presence of butadiene are shown to be in good agreement with the experimental observations.  相似文献   

15.
The PMR technique has been used to obtain thermodynamic data for hydrogen bonding of alkanethiols (RSH) in 1:1 dimers in carbon tetrachloride. At ca. 303°K these are (R, 104K(M?1), ?ΔH°(kcal/mole), ?ΔS°(eu)): n-C3H7, 51 ± 5, 0.9 ± 0.15, 13 ± 1; i-C3H7, 50 ± 10, 0.8 ± 0.3, 13 ± 1; n-C4H9, 35 ± 2, 0.8 ± 0.15, 14 ± 1; t-C4H9, 14 ± 4, 1.1 ± 0.7, 16 ± 2; C6H11, 1.3 ± 2, 0.7 ± 0.3, 15 ± 1. Alkanethiol self-association is weak, and although an exact expression [Eqn. (5)] reproduces spectral data precisely, the fit is sufficiently ‘loose’ or ‘baggy’ so that values of K, ΔH° and ΔS° are uncertain. The methodology of the treatment of self-association data and their errors is examined and Deranleau's useful approach is extended. The impossibility of obtaining reliable data for very weak (< 10 %) or very strong (> 90 %) associations by techniques equivalent to ours is emphasized. The possibility of cyclic thiol dimers is discussed. It is suggested that the PMR method cannot give trustworthy self-association data for aryl or arylalkylthiols because of the relatively large anisotropy effects introduced into the dilution shift.  相似文献   

16.
The samples of Pd-Ag/Al2O3 catalysts for the selective hydrogenation of acetylene impurities in an ethane-ethylene mixture were studied using the IR spectroscopy of adsorbed CO, X-ray diffraction analysis, and thermogravimetry. In the course of reaction and regeneration, the total concentration of the supported metals (Pd and Ag) changed only slightly. The degree of accessibility of silver atoms to CO adsorption and the amount of these atoms in the nearest environment of palladium atoms decreased to result in an increase in the selectivity of acetylene hydrogenation to ethane. The decrease in the accessibility of silver was due to a change in the phase composition of the alumina support as a result of its rehydration. It was hypothesized that the resulting aluminum hydroxide with the boehmite morphology is a source of the strongest Lewis acid sites, which catalyze oligomerization processes on the catalyst surface.  相似文献   

17.
The effect of the composition of the catalytic system and the size of particles on the properties of palladium catalysts in 2-ethyl-9,10-anthraquinone hydrogenation was studied. It was shown that, depending on the nature of a reducing agent (H2, AlEt3), palladium species formed in the absence of a modifying agent catalyze various side processes to a substantial extent together with 2-ethyl-9,10-anthraquinone hydrogenation: mostly hydrogenolysis (in the case of H2 as a reducing agent) and hydrogenation of aromatic rings in 2-ethyl-9,10-anthrahydroquinone (in the case of AlEt3 as a reducing agent). Elementary phosphorus was found to have a promoting effect on the selectivity of palladium catalysts in the synthesis of hydrogen peroxide by the anthraquinone method. The main factors that make it possible to control the selectivity of palladium catalysts were discussed.  相似文献   

18.
Pd/Sibunit and Pd–M/Sibunit (M = Ga, Zn, or Ag) catalysts have been synthesized, and their catalytic properties in liquid-phase acetylene hydrogenation have been investigated. Doping of the palladium catalyst with a metal M leads to the formation of the Pd2Ga, PdZn, or Pd0.46Ag0.54 bimetallic compound. The bimetallic particles are much smaller (1.6–2.0 nm) than the monometallic palladium particles (4.0 nm). Doping with zinc raises the ethylene selectivity by 25% without affecting the activity of the catalyst. Specific features of the effect of each of the dopants on palladium are reported.  相似文献   

19.
Neodymium is used as a promoter of Ni‐B/CNTs amorphous alloy catalyst to modify its catalytic properties. Ni‐B/CNTs and Ni‐Nd(5wt%)‐B/CNTs catalysts were prepared by the impregnation chemical reduction method. Their catalytic performances were examined in acetylene selective hydrogenation, which is a crucial step in industrial polymerization processes, with the aim of the complete elimination of alkynes from alkene feedstocks. Experiments showed that the latter exhibited higher acetylene hydrogenation activity but lower ethylene selectivity. Catalysts were characterized by ICP, CO‐chemisorption, XPS, XRD and H2‐TPD techniques. On the basis of characterizations, the modification of Nd on Ni‐B/CNTs catalyst was related to its geometric and electronic effects.  相似文献   

20.

Catalytic properties of Pd/Al2O3 and Pd-Ga/Al2O3 in selective liquid-phase hydrogenation of acetylene in a flow under pressure and the effect exerted on them by introduction of CO into the feed were studied. The presence of CO in the reaction mixture ensures the reaction with the predominant formation of ethylene. Introduction of gallium into the catalyst formulation prevents the catalyst deactivation. Simultaneous action of these factors allows reaching high yield of the target product in combination with long operation life of the catalyst.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号