首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the removal of anionic (sulfonated) dyes from aqueous dye solutions using the chemical interaction of dye molecules with polyaniline is reported. Polyaniline (PANI) emeraldine salt was synthesized by chemical oxidation. Sulfonated dyes undergo chemical interactions with the charged backbone of PANI, leading to significant adsorption of the dyes. This phenomenon of selective adsorption of the dyes by PANI is reported for the first time and promises a green method for removal of sulfonated organics from wastewater. The experimental observations from UV-vis spectroscopy, X-ray diffraction, and conductivity measurements rule out the possibility of secondary doping of polyaniline salt by sulfonated dye molecules. A possible mechanism for the chemical interaction between the polymer and the sulfonated dye molecules is proposed. The kinetic parameters for the adsorption of sulfonated dyes on PANI are also reported.  相似文献   

2.
In this study different membranes were produced, aiming to evaluate their use in electrodialysis. These membranes were produced using conventional polymer (high-impact polystyrene) and polyaniline. The membrane characterization was done by FTIR spectroscopy, scanning electron microscopy (SEM), and thermogravimetry (TGA). The studies of the zinc and proton extraction ionic transport through the membranes were evaluated using a three-compartment cell. The results obtained using the produced membranes were compared to the results obtained with the commercial membrane Nafion 450. It was found that a synthesized membrane can be used to recover zinc in acid media. In addition, a preliminary computational essay about the structures of PAni and CSA is presented.  相似文献   

3.
A new electrodialysis with charge-mosaic membranes was proposed to achieve efficient desalination of a mixed solution of an amino acid and an inorganic salt. For such a mixed solution, the conventional electrodialytic desalination with both cation-and anion-exchange membranes had resulted in a considerable loss of the amino acid through the membranes. In this method, however, the amino acid in the desalination channel of the electrodialyzer migrates away from the membranes so that the permeation loss of the amino acid through the membrane can be prevented.

Batchwise desalination experiments by this method were carried out with a glutamic acid or arginine solution including NaCl under the condition of constant electric current density. Similar experiments by the conventional method were also carried out. As a result of comparing both methods, the amino acid loss in this method became much smaller than that in the conventional one. It was confirmed that this method was very useful for the desalination of an amino acid solution. The effects of operating conditions on the desalination process are also discussed.  相似文献   


4.
The concentration of LiCl in brine and brine volume are obtained as functions of current density by the method of limiting concentration by electrodialysis. These relationships are used for model calculations of current efficiency, the diffusion, osmotic, and electroosmotic permeability of an MK-40/MA-40 membrane pair, and also salt hydration numbers. These theoretical values of water transport numbers and LiCl hydration numbers are compared with corresponding experimental and literature data. It is shown that the model adequately describes the phenomena of the mass electrotransport occurring in electrodialyzers with noncirculating concentration compartments, and it can be successfully applied in calculating the technological parameters of the process, finding the transport properties of ion-exchange membranes, and determining salt hydration numbers in aqueous electrolyte solutions.  相似文献   

5.
Production of salicylic acid from sodium salicylate was carried out by electrodialysis (ED) using bipolar membranes (BPM). The process feasibility was tested using a laboratory ED-cell with a membrane area of 40 cm2. The performances of two commercial bipolar membranes (Tokuyama Soda and Stantech membranes) are compared. Current efficiencies for salicylic acid and caustic soda production are close for both bioolar membranes (80–90%), but differences are observed with respect to energy consumption which are related to the electrical characteristics of the membranes.  相似文献   

6.
This study examines how conditions for modifying homogeneous MF-4SK and heterogeneous MK-40 membranes with tetraethoxysilane affect membrane properties. The microstructure of the bulk membrane and its surface, both before and after exposure to the modifying agent, is examined by scanning electron microscopy, spark spectrophotometry, and standard contact porosimetry. The process of sodium chloride concentration by electrodialysis with hybrid organic-inorganic membranes in cells with noncirculating concentration compartments is investigated, and a mathematical model of the concentration process by electrodialysis is used to determine transport properties: current efficiency, diffusion and osmotic permeabilities, and the salt hydration number. For highly hydrophilic membranes, it is shown that water transport occurs both in ion hydration shells and also as free water. It is established that after modified membranes undergo additional heat treatment, the transport of free water ceases, and the water transport number decreases. This is in accord with an increase in the salt content of the concentrate during concentration by electrodialysis.  相似文献   

7.
Liquid permeation and uptake measurements of pure water and methanol were carried out using three commercial cation-exchange membranes: Nafion-117 (perfluorinated polyethylene with pendant ether-linked side chains terminated with sulfonated groups), MK-40 (microparticles of polystyrene–divinylbenzene with sulfonic groups randomly dispersed in a polyethylene matrix) and CR61-CZL-412 (crosslinked sulfonated copolymer of styrene–divinylbenzene). Methanol uptake by the Nafion-117 membrane was higher than that of water, in contrast, for MK-40 and CR61-CZL-412 membranes the opposite behavior is observed. Differences in the water and methanol liquid uptakes by the membranes were discussed in terms of the chemical interaction between the liquids and the polymers, and also on the size of the liquid molecules. On the other hand, the methanol permeation flow values through the membranes were higher than those of water for all the studied membranes.  相似文献   

8.
An MF-4SK cation-exchange membrane has been modified to obtain composite materials containing acid zirconium phosphate particles. It is demonstrated by electron microscopy and X-ray diffraction that acid zirconium phosphate in the resulting membrane is in the crystalline state. As compared to the initial MF-4SK membrane, the modified membrane shows a somewhat lower diffusion permeability and a higher ion selectivity.  相似文献   

9.
Perfluorinated sulfonyl-fluoride cation-exchange flat-sheet membranes were treated with ethylene diamine to investigate the influence of EDA-surface-treatment on the process of electrochemical “switching” in such membranes. The galvanodynamic method was used to obtain iV cyclic curves of the membranes. Electroless chemical deposition of Pt particles on modified membranes was achieved using the Takenaka–Torikai method. Galvanodynamic iV cyclic curves of the plain and platinum-containing aminated membranes were compared. Chemical modification of the membrane surface and membrane structure was investigated by means of electrical conductivity measurements and IR-spectroscopy. Experimental results indicated that the “switching” phenomenon is more likely to occur due to a pH change in the electrolyte resulting in the formation of additional fixed-charged groups in the aminated layers of the membranes rather than due to heterolytic dissociation of water according to the second Wien effect.  相似文献   

10.
11.
Mass-transfer in electrodialysis of alkaline soil extracts containing pyrophosphate ions with cellophane and MA-40 and MA-41 ion-exchange membranes was studied. The transport numbers of hydroxide- and phosphorus-containing ions and the degree of demineralization of the alkaline soil extracts were determined under the conditions under study.  相似文献   

12.
The present trend to increase the energy density of electrochemical supercapacitor is to hybrid the electrochemical double layer capacitance electrode materials of carbon with loading or encapsulation of transition metal oxide or conductive polymeric pseudocapacitor materials as the binary or ternary hybrid electrochemical active materials. In this work, we selected polyaniline salt-sulfonated carbon hybrid (PANI-SA?C SA ) as a cheaper electrode material for supercapacitor electrode. Sulfonated carbon (C SA ) was prepared from hydrothermal carbonization of furaldehyde and p-toluenesulfonic acid. Polyaniline-sulfate salt containing sulfonated carbon was prepared by chemical oxidative polymerization of aniline using ammonium persulfate in presence of sulfuric acid and sulfonated carbon via aqueous, emulsion and interfacial polymerization pathways. Formation of hybrid material was confirmed from scanning electron microscopy. Among the hybrid prepared with three different polymerization pathways, hybrid prepared by aqueous polymerization pathway showed better electrochemical performance. The specific capacitance of the hybrid prepared via aqueous polymerization was 600 F g?1, which is higher than that of the pristine PANI-SA (350 F g?1) and C SA (30 F g?1). Hybrid material was subjected for 8000 charge-discharge cycles and at 8000 cycles; it showed 88% retention of its original specific capacitance value of 485 F g?1 with coulombic efficiency (97–100%). These results showed that C SA micro spheres prevent the degradation of PANI-SA chains during charge/discharge cycles. Specific capacitance, cycle life, low solution resistance, low charge transfer resistance and high phase angle value of PANI-SA?C SA supercapacitor cell indicates a higher performance supercapacitor system.
Graphical abstract Synthesis of hybrid of sulfonated carbon with polyaniline sulfate salt and its supercapacitor performance Ravi Bolagam, Palaniappan Srinivasan,* Rajender Boddula
  相似文献   

13.
In the industrial synthesis of -α-p-hydroxyphenylglycine the separation of the amino acid is carried out by precipitation. During this process, a mother liquor is produced with a high salt content (phosphates and sulphates) and an amino acid concentration of approximately 0.12–0.15 M. The disposal of this mother liquor not only causes an environmental problem due its high salinity and COD (chemical oxygen demand) content but also an economic loss due to the high price of the unrecovered amino acid. To avoid this problem an electrodialytic process has been developed that allows the recovery of 85% of the amino acid in the form of a low salinity stream with a salt content 70% lower than that of the initial mother liquor. This low salinity stream can be incorporated into the main process and in this way the amino acid can be recovered.  相似文献   

14.
Glassy carbon electrodes (GCE) and carbon paste electrodes (CPE) were modified with imidazole functionalized polyaniline with the aim to develop a sensor for lead (II) in both acidic and basic aqueous solution. The electrodes were characterized by cyclic voltammetry and differential pulse adsorptive stripping voltammetry. The limit of detections obtained with glassy carbon electrode and carbon paste electrode are 20?ng?mL-1 and 2?ng?mL-1 of lead ion, respectively. An interference study was carried out with Cd(II), As(III), Hg(II) and Co(II) ions. Cd(II) ions interfere significantly (peak overlap) and As(III) has a depressing effect on the lead signal. The influence of pH was investigated indicating that bare and modified GCE and CPE show optimum response at pH?4.0 ± 0.05.
Figure
Imidazole functionalized polyaniline modified glassy carbon and carbon paste electrodes were used for lead ion detection by using CV and DPASV techniques. The lower detection limit observed with GCE and CPE are 20?ng mL-1 and 2?ng mL-1.  相似文献   

15.
A mathematical model describing the two-dimensional concentration field of an electrodialysis device with inert spacers is proposed. The boundary-value problem includes the Navier-Stokes, continuity, and steady-state convective diffusion equations and well-defined conditions and is solved by the control-volume numerical method. Results are expressed in the form of functional relationships of generalized variables. It is shown that when channels of the electrodialysis device are filled with spacers that do not conduct electric current, mass transport increases by several times in comparison to devices with open channels. The possibility is discussed for replacing the inert spacers with ones that conduct ion, not only in the complete demineralization of natural waters, but also in the desalination of brackish ground waters.  相似文献   

16.
The current efficiencies of the water dissociation water and the voltage-current characteristics of the bipolar (asymmetric bipolar) membranes were measured in a two-chamber electrochemical cell. The cell was formed of an MB-3 bipolar membrane or an asymmetric bipolar membrane, which is an MA-40 heterogeneous membrane with a thin surface layer in the form of a cation-selective homogeneous film and MA-40 and MA-41 heterogeneous monopolar membranes. The dissociation of water on MA-40 in 0.01 M sodium chloride decreased the current efficiency of the acid and alkali both in the channel with a bipolar membrane and in the channel with an asymmetric bipolar membrane. The effective ion transport numbers across MA-40 and MA-41 at different pH values were determined. The water dissociation rate on MA-40 decreased at pH > 9.5. A kinetic model of the electrodialysis of a dilute solution of sodium chloride in a two-chamber unit cell with a bipolar and anionite membranes was suggested.  相似文献   

17.
The pH of a dilute chloride-hydrocarbonate solution and the concentrations of chloride ions and carbonic acid anions at the outlet of the alkaline and acid chambers of the electrodialysis cell formed by bipolar and anion-exchange membranes were determined. The decrease in the concentration of hydrocarbonate ions in the alkaline chamber with growth of current density was not equal to its increase in the acid chamber. This disbalance was caused by two concurrent processes: the electromigration ion transport through the anion-exchange membrane and the chemical reactions of hydrocarbonate ions with the water dissociation products formed on the bipolar and anion-exchange membranes. A mathematical model was suggested to describe the electrodialysis correction of the pH of a dilute chloride-hydrocarbonate solution. The experimental data on the correction of pH of the chloride-hydrocarbonate solution were well approximated by both the model that takes into account water dissociation on the anion-exchange membrane and the simplified model that neglects water dissociation. The experimental data agreed well with the results of calculations by the model in which the effective anion transport numbers were calculated only from ion concentrations and diffusion coefficients in solution. This reflects the outer diffusion character of the kinetics of ion transport through the anion-exchange membrane, with pH of dilute solutions corrected by electrodialysis.  相似文献   

18.
Cardo polyetherketone (PEK-C) composite membranes were prepared by casting glutaraldehyde (GA) cross-linked sulfonated cardo polyetherketone (SPEK-C) or silicotungstic acid (STA) filled SPEK-C and poly(vinyl alcohol) (PVA) blending onto a PEK-C substrate. The compatibility between the active layer and PEK-C substrate is improved by immersing the PEK-C substrate in a GA cross-linked sodium alginate (NaAlg) solution and using water–dimethyl sulfoxide (DMSO) as a co-solvent for preparing the STA-PVA-SPEK-C/GA active layer. The pervaporation (PV) dehydration of acetic acid shows that permeation flux decreased and separation factor increased with increasing GA content in the homogeneous membranes. The permeation flux achieved a minimum and the separation factor a maximum when the GA content increased to a certain amount. Thereafter the permeation flux increased and the separation factor decreased with further increasing the GA content. The PV performance of the composite membranes is superior to that of the homogeneous membranes when the feed water content is below 25 wt%. The permeation activation energy of the composite membranes is lower than that of the homogeneous membranes in the PV dehydration of 10 wt% water in acetic acid. The STA-PVA-SPEK-C-GA/PEK-C composite membrane using water–DMSO as co-solvent has an excellent separation performance with a flux of 592 g m−2 h−1 and a separation factor of 91.2 at a feed water content of 10 wt% at 50 °C.  相似文献   

19.
With the wide application of ionic liquids(ILs)in various fields,developing efficient techniques to recover ILs from effluent is an urgent demand for the cost reduction and the environmental protection.In this study,an electrodialysis(ED)method was used to recover 1-butyl-3-methylimidazolium chloride([Bmim]Cl)IL from aqueous solution as model effluent.The influences of initial IL concentration and applied voltage on the current efficiency,removal ratio,desalination ratio,membrane flux and specific energy consumption during the ED process were investigated.It was found that the removal ratio and desalination ratio increases with the increasing of initial IL concentration and applied voltage.The current efficiency decreases with the increasing of initial IL concentration and the current efficiency reached the maximum value of 94.3%at 25 V.Besides,as the applied voltage increases,the membrane flux increases and the specific energy consumption decreases.Moreover,the fouling of cation-exchange membrane was also discovered after the desalination of IL.The deposits on the surface or into the membrane which is probably caused by[Bmim]+was characterized by scanning electron microscopy,elemental analysis and Fourier transform infrared.  相似文献   

20.
A new method is proposed for the synthesis of anisotropic membranes based on F-4SF films, which ensures their modification with polyaniline in a layer with a fixed thickness. The concentration dependences of conductivity and diffusion permeability of the composite membranes are studied. These parameters decrease with increasing thickness of the polyaniline-modified layer. The quantitative correlation is revealed between the regularities of variations in both transport characteristics and the thickness of the modified layer. The absence of the asymmetry of the diffusion permeability of the examined composite membranes is explained in terms of the model of a charged bilayer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号