首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work address a number of fundamental issues and concepts related to local thermal non-equilibrium and the heat flux bifurcation phenomenon in porous media. Different types of heat flux bifurcation phenomenon are discussed in relation to previous works by the authors.  相似文献   

2.
Foam application in subsurface processes including environmental remediation, geological carbon-sequestration, and gas-injection enhanced oil recovery (EOR) has the potential to enhance contamination remediation, secure \(\hbox {CO}_{2}\) storage, and improve oil recovery, respectively. Nanoparticles are a promising alternative to surfactants in creating foam in harsh environments. We conducted \(\hbox {CO}_{2}\)-in-brine foam generation experiments in Boise sandstones with surface-treated silica nanoparticle in high-salinity conditions. All the experiments were conducted at the fixed \(\hbox {CO}_{2}\) volume fraction and fixed flow rate which changed in steps. The steady-state foam apparent viscosity was measured as a function of injection velocity. The foam flowing through the cores showed higher apparent viscosity as the flow rate increased from low to medium and high velocities. At very high velocities, once foam bubbles were finely textured, the foam apparent viscosity was governed by foam rheology rather than foam creation. A noticeable hysteresis occurred when the flow velocity was initially increased and then decreased, implying multiple (coarse and strong) foam states at the same superficial velocity. A normalized generation function was combined with CMG-STARS foam model to cover full spectrum of foam behavior in the experiments. The new model successfully captures foam generation and hysteresis trends in presented experiments in this study and data from the literature. The results indicate once foam is generated in porous media, it is possible to maintain strong foam at low injection rates. This makes foam more feasible in field applications where foam generation is limited by high injection rates that may only exist near the injection well.  相似文献   

3.
Transport in Porous Media - We investigate local aspects and heterogeneities of porous medium morphology and relate them to the relevant mechanisms of momentum transfer. In the inertial flow range,...  相似文献   

4.
Effective Flux Boundary Conditions for Upscaling Porous Media Equations   总被引:3,自引:0,他引:3  
We introduce a new algorithm for setting pressure boundary conditions in subgrid simulations of porous media flow. The algorithm approximates the flux in the boundary cell as the flux through a homogeneous inclusion in a homogeneous background, where the permeability of the inclusion is given by the cell permeability and the permeability of the background is given by the ambient effective permeability. With this approximation, the flux in the boundary cell scales with the cell permeability when that permeability is small, and saturates at a constant value when that permeability is large. The flux conditions provide Neumann boundary conditions for the subgrid pressure. We call these boundary conditions effective flux boundary conditions (EFBCs). We give solutions for the flux through ellipsoidal inclusions in two and three dimensions, assuming symmetric tensor permeabilities whose principal axes align with the axes of the ellipse. We then discuss the considerations involved in applying these equations to scale up problems in geological porous media. The key complications are heterogeneity, fluctuations at all length scales, and boundary conditions at finite scales.  相似文献   

5.
6.
Transport in Porous Media - The use of the linear Boltzmann equation is proposed for transport in porous media in a column. By column experiments, we show that the breakthrough curve is reproduced...  相似文献   

7.
Wallstrom  T.C.  Hou  S.  Christie  M.A.  Durlofsky  L.J.  Sharp  D.H.  Zou  Q. 《Transport in Porous Media》2002,46(2-3):155-178
A new algorithm is introduced for upscaling relative permeabilities, and tested in simulations of two-dimensional reservoir displacement processes. The algorithm is similar to existing algorithms for computing upscaled relative permeabilities from subgrid simulations, but uses new boundary conditions for the pressure field. The new 'effective flux boundary conditions' were introduced in a previous paper and provide a more accurate estimate of flux through high permeability channels. The algorithm was tested in conjunction with uniform grid coarsening and upscaled absolute permeabilities for a broad range of coarsenings. The permeability fields were highly heteroge-neous and layered, and were obtained from synthetic data and from conditioned realizations of actual oil reservoirs. The algorithm was tested for a wide variety of grid aspect ratios, and for both viscous-and gravity-dominated flow. Typical fine grids were of the order of 100×100 cells; the coarsest scaled-up grids were on the order of 5×5 cells. The quality of scale up was evaluated by comparing oil cut curves for the fine and coarse grid simulations. We consistently obtained excellent agreement, even at the coarsest levels of scale up.  相似文献   

8.
In a TIPM paper published in 1992, the authors presented a simple model of thermogravitational diffusion in packed columns (TPC). Though qualitatively in agreement with the experimental results, this model exhibited a systematic discrepancy with respect to the magnitude of the permeability of maximum separation in the TPC experiments. Here, the results of a re-examination of the classical phenomenology of irreversible thermodynamics in porous media, applied to TPC, are described. Through the interpretation of additional TPC experiments, we show that the effective thermal diffusion coefficient in TPC includes a dependency upon the fluid velocity. This dependency is consistent with a nonlinear extension of irreversible thermodynamics, and the model so amended accounts for a correct re-interpretation of the experiments.  相似文献   

9.
Analytical models for virus transport in saturated, homogeneous porous media are developed. The models account for three-dimensional dispersion in a uniform flow field, and first-order inactivation of suspended and deposited viruses with different inactivation rate coefficients. Virus deposition onto solid particles is described by two different processes: nonequilibrium adsorption which is applicable to viruses behaving as solutes; and colloid filtration which is applicable to viruses behaving as colloids. The governing virus transport equations are solved analytically by employing Laplace/Fourier transform techniques. Instantaneous and continuous/periodic virus loadings from a point source are examined.  相似文献   

10.
Transport in Porous Media - The last decade has seen a strong increase of research into flows in fractured porous media, mainly related to subsurface processes but also in materials science and...  相似文献   

11.
12.
This study developed generalized mathematical models to describe the motion of fluids in porous media, and applied these models to harmonic excitation applications. The problem of fluid flow in small channels of a periodic elastic solid matrix was studied at the pore scale, and the homogenization technique was applied to predict the macroscopic behavior of reservoirs. Based on the homogenization study, five separate characteristic macroscopic models were identified according to the relation between a length scale parameter and a property contrast number. These five models can be used to interpret the corresponding responses of a saturated porous medium. The relation to existing theories, such as Darcy's law, the Telegrapher's equation and Biot's theory, was investigated. The numerical results and applications are presented in Part II of the study.  相似文献   

13.
We perform numerical simulation of ultrasonic experiments on poroelastic samples, in which Biot's slow compressional wave had been observed. The simulation is performed using OASES modeling code, which allows to compute elastic wave fields in layered poroelastic media. Modeled were the experiments of Plona (1980), Rasolofosaon (1988), and our own measurements. In all the three situations, a good agreement between experiment and simulations has been observed. This further confirms the fact that Biot's theory of poroelasticity, on which the simulations were based, adequately describes the behavior of the porous materials under investigations at ultrasonic frequencies.  相似文献   

14.
Considerable effort has been directed towards the application of percolation theory and fractal modeling to porous media. We combine these areas of research to investigate percolation in prefractal porous media. We estimated percolation thresholds in the pore space of homogeneous random 2-dimensional prefractals as a function of the fractal scale invariance ratio b and iteration level i. The percolation thresholds for these simulations were found to increase beyond the 0.5927l... porosity expected in Bernoulli (uncorrelated) percolation networks. Percolation in prefractals occurs through large pores connected by small pores. The thresholds increase with both b (a finite size effect) and i. The results allow the prediction of the onset of percolation in models of prefractal porous media and can be used to bound modeling efforts. More fundamental applications are also possible. Only a limited range of parameters has been explored empirically but extrapolations allow the critical fractal dimension to be estimated for a large combination of b and i values. Extrapolation to infinite iterations suggests that there may be a critical fractal dimension of the solid at which the pore space percolates. The extrapolated value is close to 1.89 – the well-known fractal dimension of percolation clusters in 2-dimensional Bernoulli networks.  相似文献   

15.
Observation time-dependent self-diffusion coefficients can be used to obtain microstructural information of porous media. This paper presents two different kinds of Monte Carlo simulations of the self diffusion process of fluids like water in porous systems, a lattice-free method and a lattice-based method. The results for simple porous media model geometries agree well with each other and with published analytical as well as semi-analytical equations. The use of these equations, which are important for the interpretation of Pulsed Field Gradient-Nuclear Magnetic Resonance (PFG-NMR) time-dependent diffusion data with respect to properties of porous media, is discussed.  相似文献   

16.
In this study, we have developed a new method to generate a multi-directional pore network for representing a porous medium. The method is based on a regular cubic lattice network, which has two elements: pore bodies located at the regular lattice points and pore throats connecting the pore bodies. One of the main features of our network is that pore throats can be oriented in 13 different directions, allowing a maximum coordination number of 26 that is possible in a regular lattice in 3D space. The coordination number of pore bodies ranges from 0 to 26, with a pre-specified average value for the whole network. We have applied this method to reconstruct real sandstone and granular sand samples through utilizing information on their coordination number distributions. Good agreement was found between simulation results and observation data on coordination number distribution and other network properties, such as number of pore bodies and pore throats and average coordination number. Our method can be especially useful in studying the effect of structure and coordination number distribution of pore networks on transport and multiphase flow in porous media systems.  相似文献   

17.
The presence of colloidal particles in groundwater can enhance contaminant transport by reducing retardation effects and carrying them to distances further than predicted by a conventional advective/dispersive equation with normal retardation values. When colloids exist in porous media and affect contaminant migration, the system can best be simulated as a three-phase medium. Mechanisms of mass transfer from one phase to another by colloids and contaminants can be kinetic or equilibrium-based, depending on the sorption–desorption reaction rate between the aqueous and solid phases. When the rate of sorption between the water phase and the solid phase(s) is not much greater than the rate of change in contaminant concentration in the water phase, kinetic sorption models may better describe the phenomenon. In some cases of modeling one or more mass transfer processes, a useful simplification may be to introduce the local equilibrium assumption. In this study, the local equilibrium assumption for sorption processes on colloidal surfaces (hybrid equilibrium model) was compared with kinetic-based models. Sensitivity analyses were conducted to deduce the effect of major parameters on contaminant transport. The results obtained from the hybrid equilibrium model in predicting the transport of colloid-facilitated groundwater contaminant are very similar to those of the kinetic model, when the point of interest is not at contaminant and colloid source vicinities and the time of interest is sufficiently long for imposed sources.  相似文献   

18.
In Part I of this study, generalized mathematical models were developed to describe the motion of fluids in porous media. The second part of this study solved the problem of fluid flow in small channels of a periodic elastic solid matrix at the pore scale numerically, and applied the volume-averaging technique to predict the macroscopic behavior of reservoirs. The numerical results demonstrated different macroscopic behavior of a porous medium due to cyclic excitation at various frequencies corresponding to the five separate characteristic macroscopic models identified in Part I. The results emphasize the need to use an appropriate model to interpret the corresponding responses of a saturated porous medium.  相似文献   

19.
Existence theorems are proved for solutions of problems of nonlinear gravity fluid filtration in regions with specified boundaries of complex geometry. The theory developed can be used to design the underground flow net of a hydraulic structure with specified filtration characteristics.  相似文献   

20.
Traditional mathematical models of multiphase flow in porous media use a straightforward extension of Darcys equation. The key element of these models is the appropriate formulation of the relative permeability functions. It is well known that for one-dimensional flow of three immiscible incompressible fluids, when capillarity is neglected, most relative permeability models used today give rise to regions in the saturation space with elliptic behavior (the so-called elliptic regions). We believe that this behavior is not physical, but rather the result of an incomplete mathematical model. In this paper we identify necessary conditions that must be satisfied by the relative permeability functions, so that the system of equations describing three-phase flow is strictly hyperbolic everywhere in the saturation triangle. These conditions seem to be in good agreement with pore-scale physics and experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号