首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Four CuII and CoII complexes–[Cu(L1)Cl2(H2O)]3/2H2O · 1/2EtOH, [Cu(L1)2Cl2]6H2O, [Co(L1)Cl2]3H2O · EtOH, and [Co2(L1)(H2O)Cl4]1.5H2O · EtOH (L1 = 2,4,6-tri(2-pyridyl)-1,3,5-triazine; TPT)–were synthesized by conventional chemical method and used to synthesize another four metal complexes–[Cu(L1)I2(H2O)]6H2O, [Cu(L1)2I2]6H2O, [Co(L1)I(H2O)2]I · 2H2O, and [Co2(L1)I4(H2O)3]–using tribochemical reaction, by grinding it with KI. Substitution of chloride by iodide occurred, but no reduction for CuII or oxidation of CoII. Oxidation of CoII to CoIII complexes was only observed on the dissolution of CoII complexes in d6-DMSO in air while warming. The isolated solid complexes (CuII and CoII) have been characterized by elemental analyses, conductivities, spectral (IR, UV-Vis, 1H-NMR), thermal measurements (TGA), and magnetic measurements. The values of molar conductivities suggest non-electrolytes in DMF. The metal complexes are paramagnetic. IR spectra indicate that TPT is tridentate coordinating via the two pyridyl nitrogens and one triazine nitrogen forming two five-membered rings around the metal in M : L complexes and bidentate via one triazine nitrogen and one pyridyl nitrogen in ML2 complexes. In binuclear complexes, L is tridentate toward one CoII and bidentate toward the second CoII in [Co2(L1)Cl4]2.5H2O · EtOH and [Co2(L1)I4(H2O)3]. Electronic spectra and magnetic measurements suggest a distorted-octahedral around CuII and high-spin octahedral and square-pyramidal geometry around CoII.  相似文献   

2.
New complexes of bivalent Co, Ni, and Cu with isatin aminoguanisone (HL) and nitroaminoguanisone (HL1) of the composition ([Co(HL)2]Cl2 (I), [Ni(HL)2]Cl2 (II), [Cu(L)Cl] (III), [Co(L1)2] (IV), [Ni(L1)2] (V), and [Cu(L1)2] (VI) are synthesized. Their molecular conductivities and effective magnetic moments are measured and thermal stabilities are studied. The type of the ligand coordination in IVI is proposed on the basis of IR data. The summary of physicochemical data for IVI and the energy calculations for their molecules by the molecular mechanics method made it possible to establish stoichiometry of the coordination polyhedra of the complexes.  相似文献   

3.
The diamagnetic complexes [Pd(HL)Cl3](I) and PdLCl2(II), where L is 2-(3,5-dimethylpyrazol-1-yl)-4-methylquinoline, were obtained. According to X-ray diffraction data, the crystal structure of complex I consists of mononuclear acentric molecules. The coordination polygon PdNCl3 is a distorted square (trapezium) made up of the pyrazole N atom of the monodentate ligand (cation HL+) and three Cl atoms. Complex II seems to contain the square polygon PdN2Cl2.  相似文献   

4.
Abstract

Five new coordination complexes [MnII (L1)2(4,4′-bpy)]n (1), [NiII (L1)2(4,4′-bpy)]n (2), [ZnII (L1)2(4,4′-bpy)]n (3), [CuII (L1)2(phen)2]Cl2 (4) and [CuII 2(L1)2(2,2′-bpy)2]Cl2 (5) (HL1?=?3,4,5-trifluorobenzeneseleninic acid, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine and phen = 1,10-phenanthroline), have been synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), elemental analysis and IR spectroscopy. Complexes 13 display similar layers structures. In 13, the adjacent layers are further connected through π···π interactions to form three-dimensional supramolecular structures. Complexes 4 and 5 show a dimer containing an eight-membered ring. The dimer extends into three-dimensional supramolecular structures through π···π interactions, C–H···F and C–H···Cl interactions.  相似文献   

5.

Two new co-ordination compounds of PdII with 1-vinylimidazole of the formulae [PdL4]Cl2·3H2O and trans-[PdL2Cl2], where L is a 1-vinylimidazole molecule, have been obtained. The compounds were characterised by spectroscopic, molar conductivity, thermogravimetric and magnetochemical measurements. Single crystal X-ray structure analyses of the complexes were also carried out. The compounds are diamagnetic with square-planar coordinatination around the palladium(II) ions. Other physico-chemical properties of the both complexes are compatible with their structures.  相似文献   

6.
The reaction of Schiff base 1,7-bis-(pyridin-2-yl)-2,6-diaza-1,6-heptadiene (L) with either NiCl2·6H2O or [PdIICl2(CH3CN)2]/Na[BF4] in 1?:?1 stoichiometry yielded mononuclear ionic complexes, trans-[NiII(L)(H2O)2]Cl2·3H2O (1·3H2O) and [PdII(L)][BF4]2 (2), respectively; the reaction of L with [PdIICl2(CH3CN)2] in 1?:?2 ratio yielded dinuclear cis-[PdII 2(μ-L)Cl4] (3). Complexes 1–3 were characterized by vibrational spectroscopy and X-ray diffraction; diamagnetic 2 and 3 were also characterized by NMR in solution. The molecular structures of 1 and 2 displayed tetradentate coordination of L with formation of two five-membered and one six-membered chelate rings for both complexes. In 3, L showed bidentate coordination mode for each pyridylimine toward PdII. Complex 1 has distorted octahedral geometry around NiII and an extended hydrogen-bond network; distorted square planar geometry around PdII in 2 and 3 was observed.  相似文献   

7.
Based on the analysis of structural parameters of molecules (Cl3PNCH3)2 (I) and (Cl3PNCH2CH2Cl)2 (II) by the quantum-chemical nonempirical calculations the following was revealed. The structure of I and II dimers has geometric features, which have a decisive influence on the degree of inhibition of positional exchange of the chlorine atoms in the P-Cl fragments known for the chlorine derivatives of pentacoordinated phosphorus atom. The obstacles to this dynamic process in the mentioned intramolecular dimers is shown to result from the spatial nonvalent interactions due to the short contacts of the chlorine and hydrogen atoms.  相似文献   

8.
Complexes [CuL1Cl2] (I), [CuL2Cl2] · EtOH (II), and Cu2L3Cl4 (III) containing esters of the N-derivatives of optically active amino acids based on (+)-3-carene (L1, L2) and (?)-α-pinene (L3) are synthesized. The crystal and molecular structures of compounds I and II are determined by X-ray diffraction analyses (CIF files CCDC nos. 1560071 (I), 1560072 (II)). The crystal structure of compound I consists of mononuclear complex molecules. In the structure of compound II, the unit cell contains two crystallographically independent molecules of mononuclear complex [CuL2Cl2] and two EtOH molecules. Ligands L1 and L2 perform the tridentate-chelating function by the N atoms of the NH and NOH groups and by the O atom of the C=O group. In compounds I and II, the coordination polyhedra Cl2N2O of the Cu atoms are trigonal bipyramid. According to the data of IR and electronic spectroscopy, binuclear complex III has similar coordination polyhedra. The experimental values of μeff for compounds I, II, and III at 300 K are 1.93, 1.88, and 2.71 μB. For complex III, the μeff(T) dependence in a range of 2–300 K indicates a weak ferromagnetic exchange interaction.  相似文献   

9.
Transition metal complexes of 2-(1-(carboxymethyl)-2-methyl-1H-benzimidazol-3-ium-3-yl)acetate (HL), namely [Co(L)2(H2O)4] · 6H2O (I) and [Cu(L)2(H2O)2] · 4H2O (II), have been synthesized by a hydrothermal procedure and characterized by X-ray crystallography, CIF files CCDC nos. 1007524 (I), 1007525 (II). Both I and II are mononuclear molecules. In I, the Co2+ ion is in octahedral coordiantion environment and surrounded by four O atoms from water molecules and two carboxylate O atoms of two deprotonated ligand (L?) occupied six culmination. While in II, the Cu2+ ion is located in a square-planar geometry, bounded to two aqua O atoms and two carboxylate O atoms from L?.  相似文献   

10.
Diamagnetic Pd(II) complexes with the chiral ethylenediaminodioxime (H 2 L) and bis-α-thiooxime (H2L1), the derivatives of monoterpenoid (+)-3-carene, of the composition Pd2(H2L)Cl4(I), Pd2(H2L1)Cl4 (II), and the solvate Pd2(H2L1)Cl4·3DCl3 (III) were synthesized. The crystal structures of complex I and solvate III were determined from X-ray diffraction data. The structures consist of acentric binuclear molecules with the coordination cores PdN2Cl2 (in I) and PdNSCl2 (in III) in the form of the distorted squares. In complex I, each Pd atom coordinates two N atoms of the tetradentate bridge-cyclic ligand H2L and two Cl atoms; in compound III, one N and one S atom of the tetradentate bridge-cyclic ligand H2L1, and 2 Cl atoms. The CDCl3 molecules in compound III lie in the cavities formed by the molecules of complex II. In both structures, the PdCl2 fragments are in the trans-positions. The 1H NMR spectra indicate that the structures of complexes I, II in solutions are similar to the structures of compounds I, III in the solid state. Original Russian Text ? T.E. Kokina, L.I. Myachina, L.A. Glinskaya, A.V. Tkachev, R.F. Klevtsova, L.A. Sheludyakova, S.N. Bizyaev, A.M. Agafontsev, N.B. Gorshkov, S.V. Larionov, 2008, published in Koordinatsionnaya Khimiya, 2008, Vol. 34, No. 2, pp. 120–132.  相似文献   

11.
Three new Cd(II) complexes consisting of phenanthroline derivative and organic acid ligands, formulated as [Cd3(3-PIP)2(L1)6] (I), [Cd(3-PIP)(L2)] · H2O (II), and [Cd(3-PIP)(L3)] (III) (3-PIP = 2-(3-pyridyl)imidazo[4,5-f]-1,10-phenanthroline, HL1 = 3,5-dinitrobenzoic acid, H2L2 = oxalic acid, H2L3 = benzene-1,3-dicarboxylic acid), have been synthesized via the hydrothermal reaction and characterized by single-crystal X-ray diffraction, elemental analyses and FT-IR spectra. Complex I is a trinuclear structure. Complex II features a 1D zigzag chain. Complex III shows a twisted double chain of binuclear units sustained by double carboxylate bridges. Three complexes are further extended into 3D supramolecular frameworks by hydrogen bonding and π-π-stacking interactions. The structural differences among I–III show that the organic carboxylates have important effects on the structures. Furthermore, the supramolecular interactions are the critical factors in determining the final structures of the complexes. In addition, the thermal stabilities and luminescent properties of complexes I and II are also investigated.  相似文献   

12.
The diamagnetic complexes [Pd2(H2L1)Cl4] (I), [Pd2(H2L2)Cl4] (II), and Pd2(H2L3)Cl4(III) with chiral ligands derived from the natural monoterpenoid (R)-(+)-limonene are obtained (H2 L1 is ethylenediamine dioxime, H2L2 is piperazine dioxime, and H2L3 is propylenediamine dioxime). According to X-ray diffraction data, the crystal structures of complexes I and II are composed of binuclear acentric molecules. The coordination polyhedra PdN2Cl2 are trapeziums (squares distorted in a tetrahedral manner) made up of two N atoms of the tetradentate bridging cyclic ligands H2L1 and H2L2 and two Cl atoms. The fragments PdCl2 are trans in the complexes. The 13C and 1H NMR spectra of complexes I and II in CDCl3 also suggest their binuclear structures.  相似文献   

13.
Chiral bis-α-thiooxime (H2L1), the derivative of the natural monoterpenoid (+)-3-carene, was synthesized and used to prepare paramagnetic complexes of the composition M(H2L1)Cl2 (M=Ni, Cu). The crystal structures of [Ni(H2L1)Cl2] (I) and [Cu(H2L1)Cl2] (II) were determined by X-ray diffraction analysis. Crystals I and II consist of mononuclear acentric molecules. The Ni2+ ion in a molecule of complex I coordinates two N atoms and two S atoms of a tetradentate chelating ligand (the H2L1 molecule) and two Cl atoms. The NiCl2N2S2 coordination core forms octahedron compressed along the apical N atoms. In a molecule of complex II, the Cu2+ ion coordinates two S atoms and the N atom of a tridentate chelating H2L1 ligand and two Cl atoms. The CuCl2NS2 coordination core forms a trigonal bipyramid.  相似文献   

14.
Tin coordination compounds [Sn(H2O)2Cl4] · 18C6 (I) and [Sn(H2O)2Cl4] · 18C6 · 2H2O (II) were synthesized and identified by IR spectroscopy, CH analysis, and X-ray powder diffraction. The crystal structures of compounds I and II were determined. The crystals of I and II are orthorhombic; a = 16.871(1) ?, b = 7.7305(7) ?, c = 16.939(1) ?, Z = 4, space group Cmca for I; a = 14.206(2) ?, b = 20.376(3) ?, c = 8.319(1) A, Z = 4, space group Pna21 for II. The structural units of I and II are [Sn(H2O)2Cl4] · 18C6 complex molecules (in II, also water molecules of crystallization). The coordinated water molecules in I are trans and those in II are cis to each other. The structural units in the crystals of I and II are combined only by hydrogen bonds between water molecules and the crown-ether oxygen atoms with the formation of the chain structure. Complex I was tested as the precursor of tin dioxide in a chemical vapor deposition (CVD) process. The morphology of the obtained film was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM), and the composition was studied by laser mass spectrometry for elemental analysis.  相似文献   

15.
The reactions of 3,10‐C‐meso‐3,5,7,7,10,12,14,14‐octamethyl‐1,4,8,11‐tetraazacyclotetradecadiene, L1, and two isomers (LB and LC, differing in the orientation of methyl groups on the chiral carbon atoms) of its reduced form with PdCl2 and K2[Pd(SCN)4], produce square‐planar tetrachloro‐ and tetrathiocyano‐palladium(II) complexes of general formulae [PdL′][PdCl4] and [PdL′][Pd(SCN)4] (L′ = L1, LB and LC), respectively. By contrast, the third ane isomer, LA, upon reaction with the same reagents, PdCl2 and K2[Pd(SCN)4], formed octahedral tetrachloro‐ and tetrathiocyanato‐palladium(IV) complexes [PdLACl2]Cl2 and [PdLA(SCN)2](SCN)2, respectively. The [PdL′][PdCl4] and [PdLACl2]Cl2 complexes undergo substitution reactions with KSCN to form square‐planar and octahedral tetrathiocyanato complexes [PdL′][Pd(SCN)4] and [PdLA(SCN)2](SCN)2, respectively. All complexes have been characterized on the basis of analytical, spectroscopic, conductometric and magnetochemical data. The anti‐fungal and anti‐bacterial activities of these complexes have been studied against some phytopathogenic fungi and bacteria. The crystal structure of [PdL1][Pd(SCN)4] has been confirmed by X‐ray crystallography and shows with square‐planar PdN4 and PdS4 geometries [monoclinic, space group C2/c, a = 17.884(3) Å, b = 14.734(2) Å, c = 11.4313(18) Å, β = 104.054(5)° ]. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Data on the synthesis and the IR spectroscopic and X-ray diffraction analyses of new complexes of yttrium chloride with carbamide (Ur), [Y(Ur)4(H2O)4]Cl3 (I) and [Y(Ur)6(H2O)2]Cl3 (II), and with acetamide (AA), [Y(AA)5(H2O)2]Cl3 (III), are presented. The coordination of the ligands occurs through the oxygen atoms. For complexes I and II, the coordination polyhedra of the Y atoms are distorted tetragonal antiprisms. For structure III, the coordination polyhedron of the Y atom is a distorted pentagonal bipyramid. The coordination of four Ur molecules in complex I does not change their planar structure, and two Ur molecules in structure II have the dihedral angle N-C(O)-N different from 180°. The chloride ions are in the external sphere. Many hydrogen bonds are observed in the structures of complexes IIII.  相似文献   

17.
New complexes [Pd(HDMBG)2]Cl2·H2O, [PdL1]Cl2·0.5H2O and [PdL2]Cl2·1.5H2O (HDMBG: dimethylbiguanide, L1 and L2: ligands resulted from HDMBG, ammonia/hydrazine and formaldehyde template condensation) were synthesized and characterized. The features of complexes have been assigned from microanalytical, IR, UV–Vis and cyclic voltammetry data. The thermal transformations are complex processes according to TG and DTA curves including water and hydrochloric acid elimination, thermolysis processes leading to paracyanide formation as well as PdO decomposition, final product being palladium. Complexes were screened for their antimicrobial properties against some pathogenic Gram-positive and Gram-negative bacterial as well as fungal Candida albicans strains. The complexes exhibit specific antibacterial and/or antifungal activity, depending on their structure and the tested microbial strains. All complexes inhibit the microbial biofilm development on the inert substratum. It was also observed that PdCl2 complexation minimized their cytotoxic effect on the eukaryotic cells.  相似文献   

18.
Two new tetranuclear NiII complexes, [Ni4(L1)2(N3)4(MeOH)2]·CH3COCH3 (1) and [Ni4(L2)2(N3)4(MeOH)2]·4CH3COCH3 (2) , were synthesized using NiCl2·6H2O, NaN3, and asymmetric salamo‐based ligands H2L1 and H2L2, respectively. The structural characterization was made by elemental analyses, infrared (IR) and ultraviolet‐visible (UV‐vis) spectra, and X‐ray diffraction analyses. The results of X‐ray diffraction analyses show that the NiII atoms in complexes 1 and 2 are distorted octahedral geometries. Interestingly, the degree of distortion of the ligands in complexes 1 and 2 is different, which indicates that the interaction of NiII ions on different ligands is different. Meanwhile, the investigation of molecular packing by employing the Hirshfeld surface analysis exhibits that the percentages of C–H/H–C, O–H/H–O, and H–H/H–H contacts of the complex 1 (or 2 ) are calculated to be 17.7%, 7.9%, and 53.7% (or 18.8%, 13.8%, and 52.5%), respectively, where the H–H/H–H contacts have the characteristics of strong contacts whereas the O–H/H–O hydrogen bonds are considerably weak, and the studies on fluorescence properties further confirm the NiII atoms have different binding abilities to the different ligands.  相似文献   

19.
Naphthaldimines containing N2O2 donor centers react with platinum(II) and (IV) chlorides to give two types of complexes depending on the valence of the platinum ion. For [Pt(II)], the ligand is neutral, [(H2L1)PtCl2]·3H2O (1) and [(H2L3)2Pt2Cl4]·5H2O (3), or monobasic [(HL2)2Pt2Cl2]·2H2O (2) and [(HL4)2Pt]·2H2O (4). These complexes are all diamagnetic having square-planar geometry. For [Pt(IV)], the ligand is dibasic, [(L1)Pt2Cl4(OH)2]·2H2O (5), [(L2)Pt3Cl10]·3H2O (6), [(L3)Pt2Cl4(OH)2]·C2H5OH (7) and [(L4)Pt2Cl6]·H2O (8). The Pt(IV) complexes are diamagnetic and exhibit octahedral configuration around the platinum ion. The complexes were characterized by elemental analysis, UV-Vis and IR spectra, electrical conductivity and thermal analyses (DTA and TGA). The molar conductances in DMF solutions indicate that the complexes are non-ionic. The complexes were tested for their catalytic activities towards cathodic reduction of oxygen.  相似文献   

20.
The reactions of zinc(II) chloride and two Schiff base ligands derived from rimantadine and 5-chlorosalicylaldehyde/4-methoxysalicylaldehydes, generated two novel complexes [Zn(L1)2Cl2] (I) and [Zn(L2)2Cl2] (II), where L1 = 2-((1-(1-adamantan-1-yl)ethyl)-iminomethyl)-4-chlorophenol, L2 = 2-((1-(1-adamantan-1-yl)ethyl)iminomethyl)-5-methoxyphenol. The complexes were characterized by the means of IR, 1H NMR, elemental analysis, molar conductance and thermal analysis. A single-crystal X-ray diffraction analysis reveals that both complexes crystallize in orthorhombic system, space group Fdd2 for I and Pbcn for II. In two complexes crystals, each asymmetric unit consists of one zinc(II) ion, two corresponding Schiff base ligands and two chlorine atoms; the central zinc atom lies on a twofold rotation axis and is four-coordinate via two chlorine atoms and two oxygen atoms from the Schiff base ligands, forming a distorted tetrahedral geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号