首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a formulation for optimal control of a forced convection flow. The state equation that governs the forced convection flow can be expressed as the incompressible Navier-Stokes equations and energy equation. The optimal control can be formulated as finding a control force to minimize a performance function that is defined to evaluate a control object. The stabilized finite element method is used for the spatial discretization, while the Crank-Nicolson scheme is used for the temporal discretization. The Sakawa-Shindo method, which is an iterative procedure, is applied for minimizing the performance function.  相似文献   

2.
浮区法因具有无坩埚接触污染的生长优点而成为生长高完整性和高均匀性单晶材料的重要技术.但熔体中存在的毛细对流会给浮区法晶体生长带来极大挑战,这是由于对流的不稳定会导致晶体微观瑕疵的产生和宏观条纹等缺陷的形成.为了提高浮区法生长单晶材料的品质,研究浮区法晶体生长中毛细对流特性及如何控制其不稳定性显得尤为重要.本文采用数值模拟的方法对半浮区液桥内SixGe1-x体系中存在的热质毛细对流展开研究并施加旋转磁场对其进行控制.结果表明:纯溶质毛细对流表现为二维轴对称模式,温度场主要由热扩散作用决定,而浓度场则由对流和溶质扩散共同支配;纯热毛细对流呈现三维稳态非轴对称流动,浓度分布与熔体内热毛细对流的流向密切相关,等温线在对流较大的区域发生弯曲;耦合溶质与热毛细对流则为三维周期性旋转振荡流.施加旋转磁场后,熔体周向速度沿径向向外增大,熔体内浓度场和流场均呈现二维轴对称分布.  相似文献   

3.
郑珺婷  詹杰民 《力学进展》2002,32(3):415-424
两种分子扩散率不同的量同时对流体所受浮力产生影响,只要两者之一具有不稳定的分布,便可能发生对流,通常称之为双扩散对流.这种现象广泛存在于自然界和工业生产中.近年来,在金属合金固化过程中对技术控制要求的不断精细化,以及在电子、半导体等工业中对晶体质量的要求不断提高,都极大促进了双扩散对流这一领域的发展.本文介绍双扩散系统的研究发展历程,以及腔体模型、二维Boussinesq模型、k-e模型等几种常用的数学物理模型,常用的数值方法和著名的实验.   相似文献   

4.
热湍流(浮力驱动湍流)作为一种典型的湍流现象,广泛存在于自然界和工程应用中. Rayleigh-Bénard (RB)湍流是从众多自然现象中抽象出来研究热湍流的经典模型, RB湍流的典型特征是系统中存在大尺度环流和羽流等不同尺度的湍流结构,这些结构通过作用于边界层,影响RB湍流的输运效率.因此,明确不同尺度湍流结构的生成、演化和作用机理,对理解RB湍流的输运特性至关重要,也是通过控制湍流结构调控输运效率的科学基础.本文重点从湍流结构的时空演化规律、输运特性、湍流调控和热湍流在其他领域的拓展四个方面评述近十年来RB湍流研究所取得的新进展,并对今后的研究方向做出展望.  相似文献   

5.
The two-phase boundary layer in laminar film condensation was solved by Koh for the free convection regime and forced convection regime using the similarity method. But the problem on mixed convection does not admit similarity solutions. The current work develops a local nonsimilarity method for the full spectrum of mixed convection, with a generic boundary layer formulation reduced to two specific cases mathematically identical to Koh’s formulations on the two limiting cases for either free or forced convection. Other solution methods for mixed convection in the literature are compared and critically evaluated to ensure a high level of accuracy in the current method. The current solution is used to extend Fujii’s correlation for mixed convection to the region where the energy convection effect is significant but has been hitherto neglected. The modified Fujii correlation provides a practical engineering tool for evaluating laminar film condensation with a mixed convection boundary layer.  相似文献   

6.
Recent studies have shown that the evaporation of water can induce surface tension gradients along the water surface that ultimately lead to a surface driven flow, known as Marangoni convection. To visualize and characterize the Marangoni convection in water, this study generated evaporation driven convection in pure water with a vacuum pump to control and increase the evaporation rate of water within a rectangular cuvette that was placed within a vacuum chamber, and investigated the velocity and temperature distributions of the generated convection. The investigation was performed as the vacuum chamber pressure ranged from ∼250 Pa to ∼820 Pa. The temperature field obtained from thermocouple measurements and temperature planar laser induced fluorescence (temp-PLIF) measurements indicated that no buoyancy driven motion was generated during the investigation. Velocity vector fields captured with stereo particle image velocimetry (stereo-PIV) demonstrated a convection pattern that was strong and symmetric with the centerline of the cuvette. The strength of the convection was found to be correlated with the mean evaporation rate of water. The estimated Marangoni number exceeded the critical value typically used to characterize the onset of Marangoni convection. The convection had a similar pattern as Marangoni convection observed in volatile liquids evaporated from capillary tubes. In both cases, the convection scaled with the width of the liquid container even though the sizes of the containers differ by an order of magnitude. In addition, the size of the convection in this study was much larger than the Marangoni convection in water that was observed in previous studies.  相似文献   

7.
有关多层流体对流的研究   总被引:4,自引:0,他引:4  
简述多层不相混流体系统的研究发展,尤其是在空间材料生长过程中的应用;介绍多层流体系统内流体对流及传热现象,以及利用理论分析、实验研究和数值模拟方法研究二层及三层流体内的自然对流及热毛细对流的成果,并分析探讨覆盖液体层对被覆盖液体的动力控制特性及其系统的稳定性  相似文献   

8.
Theoretical and Computational Fluid Dynamics - Thermomagnetic convection is based on the use of external magnetic fields to better control heat transfer fluxes in ferrofluids, finding important...  相似文献   

9.
目前流体流动与传热问题的研究大都基于确定性工况条件,而现实流体流动与传热问题中存在着大量不确定性因素,计算流体力学的不确定性量化提供了一种理解流体物性、边界条件与初始条件等不确定性因素对模拟结果影响的能力.为揭示随机多孔介质内顺磁性流体热磁对流的传播规律与演化特征,本文发展了一种基于侵入式多项式混沌展开法的热磁对流不确...  相似文献   

10.
Layered Thermohaline Convection in Hypersaline Geothermal Systems   总被引:3,自引:0,他引:3  
Thermohaline convection occurs in hypersaline geothermal systems due to thermal and salinity effects on liquid density. Because of its importance in oceanography, thermohaline convection in viscous liquids has received more attention than thermohaline convection in porous media. The fingered and layered convection patterns observed in viscous liquid thermohaline convection have been hypothesized to occur also in porous media. However, the extension of convective dynamics from viscous liquid systems to porous media systems is complicated by the presence of the solid matrix in porous media. The solid grains cause thermal retardation, hydrodynamic dispersion, and permeability effects. We present simulations of thermohaline convection in model systems based on the Salton Sea Geothermal System, California, that serve to point out the general dynamics of porous media thermohaline convection in the diffusive regime, and the effects of porosity and permeability, in particular. We use the TOUGH2 simulator with residual formulation and fully coupled solution technique for solving the strongly coupled equations governing thermohaline convection in porous media. We incorporate a model for brine density that takes into account the effects of NaCl and CaCl2. Simulations show that in forced convection, the increased pore velocity and thermal retardation in low-porosity regions enhances brine transport relative to heat transport. In thermohaline convection, the heat and brine transport are strongly coupled and enhanced transport of brine over heat cannot occur because buoyancy caused by heat and brine together drive the flow. Random permeability heterogeneity has a limited effect if the scale of flow is much larger than the scale of permeability heterogeneity. For the system studied here, layered thermohaline convection persists for more than one million years for a variety of initial conditions. Our simulations suggest that layered thermohaline convection is possible in hypersaline geothermal systems provided the vertical permeability is smaller than the horizontal permeability, as is likely in sedimentary basins such as the Salton Trough. Layered thermohaline convection can explain many of the observations made at the Salton Sea Geothermal System over the years.  相似文献   

11.
A linear stability analysis is conducted for thermal convection in a two-layer system composed of a fluid layer overlying a porous medium saturated with an Oldroyd-B fluid heated from below. It is found that the convection pattern in the system is controlled by the porous medium when the ratio of the depth of the fluid layer to that of the porous medium is small. However, the fluid layer takes a predominant role if the depth ratio exceeds a critical value. Compared with stationary convection, the switching point from a porous-dominated mode to a fluid-dominated mode for oscillatory convection is located at a lower depth ratio. The effects of different parameters on stationary convection and oscillatory convection are also investigated in detail.  相似文献   

12.
A nonsimilar boundary layer analysis is presented for the problem of mixed convection in power-law type non-Newtonian fluids along a vertical plate with power-law surface heat flux distribution. The mixed convection regime is divided into two regions, namely, the forced convection dominated regime and the free convection dominated regime. The two solutions are matched. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate. Received on 13 October 1998  相似文献   

13.
Turbulence in thermal convection is investigated for flows in which the production of turbulence energy is due solely to buoyancy, and the statistics of the flow are homogeneous in horizontal planes. New experimental results for high Rayleigh number unsteady turbulent convection in a horizontal layer heated from below and insulated from above are presented and compared to turbulent Rayleigh convection, convection in the planetary boundary layer, and laboratory penetrative convection. Mean temperature fields are correlated in terms of wall layer scales and convection scales. Joint statistics of turbulent temperature and horizontal velocity and vertical velocity through fourth order are presented for the core region of the convection layer.This paper was presented at the Ninth Symposium on Turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

14.
An optimal feedback control is synthesized for the Rayleigh–Bénard convection by means of empirical reduction of modes. The Boussinesq equation is reduced to a minimal set of ordinary differential equations by using the Karhunen–Loève Galerkin procedure. The state feedback control synthesis, that drives the intensity of convection to a preset trajectory by adjusting heat flux at the bottom of the system, is constructed using this low‐dimensional dynamic model by first performing an extended Kalman filter estimate of the velocity and temperature fields and then developing the optimal feedback law by means of the linear regulator theory. The present technique allows for the practical implementation of modern control concepts to the natural convection and is found to yield satisfactory results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Potentially unstable equilibrium is stabilized by means of a method of control based on the single-channel feedback principle using the characteristics of the solution of the complete nonlinear thermal convection equations. The convection equations are solved by a finite-difference method.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 6–11, July–August, 1990.  相似文献   

16.
An analytical study is made for wall effects in non-Darcy mixed convection from vertical impermeable surfaces embedded in a saturated porous medium. The governing equations are transformed into a dimensionless form by non-similar transformation to cover both forced and natural convection dominated regimes. Two different dimensionless parameters that measure the strength of mixed convection were found in both regimes. The parameters of forced convection dominated regime can be related to those of natural convection dominated regime. An approximate analytical solution for the governing equations was obtained. Temperature and velocity profiles for both regimes are presented. Received on 9 September 1997  相似文献   

17.
The non-isothermal dynamic behaviour of saturated porous media is analysed numerically employing the finite element method and taking energy convection due to large pore fluid displacements into account. A different pore fluid reference temperature is introduced in order to allow properly for heat convection: this concept is usually neglected in the literature and is discussed and analysed herein. The numerical procedure is validated in a simple problem of hot fluid injection in a steady seepage flow and by comparing the numerical results, neglecting energy convection, with those obtained with a novel solution of the linearised equations, presented herein, which is based on the transfer functions and Fourier transforms method. Finally, the effects of energy convection in wave propagation are analysed: in a pervious porous medium the flux of energy due to energy convection is much greater than the one due to heat conduction; in any case, wave propagation can be considered completely adiabatic even when energy convection is taken into account. Thus the validity of the results presented in the literature and based on the linearised theory is demonstrated.  相似文献   

18.
A nonsimilar boundary layer analysis is presented for the problem of mixed convection in power-law type non-Newtonian fluids along horizontal surfaces with variable wall temperature distribution. The mixed convection regime is divided into two regions, namely, the forced convection dominated regime and the free convection dominated regime. The two solutions are matched. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate. Received on 11 March 1997  相似文献   

19.
The coriolis effect on a solidifying mushy layer is considered. A near-eutectic approximation and large far-field temperature is employed in the current study for moderate Stefan numbers. The linear stability theory is used to investigate analytically the Coriolis effect on convection in a rotating mushy layer for a new formulation of the Darcy equation. It was found that only stationary convection is possible for moderate Stefan numbers. In contrast to the problem of a stationary mushy layer, rotating the mushy layer has a stabilizing effect on convection. It was also discovered that fot Taylor numbers larger than three (i.e., Ta > 3),increasing the retardability coefficient (hence increasing the solid fraction) destablished the convection.  相似文献   

20.
Thermal vibrational convection in a saturated porous medium is theoretically studied on the basis of a thermal nonequilibrium model, in accordance with which the temperatures of the porous medium and the saturating liquid can be different. In the high-frequency vibration approximation the averaged equations of convection are derived. The dependence of the vibration force direction on the interphase heat transfer coefficient and the vibration frequency is established. Vibrational convection in a cylindrical layer is studied. It is shown that, depending on the interphase heat transfer coefficient, the flows of two types differing in the liquid circulation direction can exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号