首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report an FTIR method to measure the accessibility and the size of cellulose microfibrils from the cell wall of Valonia ventricosa. This method is similar to the conventional deuteration technique for measuring the accessibility of cellulosic materials; however, the difference in our method is that the hydroxyl groups O2H, O3H, and O6H in the crystalline region were initially completely deuterated. The sample was then rehydrogenated by soaking in water at 25 °C, so that the OD groups on the surface were rehydrogenated. The ratio of OH to OD absorbance was used to calculate the number of surface vs. core cellulose chains in a microfibril. The obtained experimental ratio of 0.934 was consistent with the value calculated for a previously published 33 × 38 chain Valonia model (Sugiyama et al. 1984). The rehydrogenation process was further investigated by immersing the sample in water at elevated temperatures. At temperatures above 120 °C, rehydrogenation was more efficient, and the efficiency plots vs. rehydrogenation temperature showed two inflection. These points may correspond to the temperature where the cleavage of inter-chain hydrogen bonds and/or crystalline-phase transition would have been occurred.  相似文献   

2.
A Valonia cellulose (NV), a cellulose II derived from NV by mercerization (MV), and a cast cellulose II film (F) were deuterated repeatedly (wetting-drying cycle) in vapor phase at 25°C; the integrated deuteration time amounts to 5 × 105 min. A region C, which cannot be attacked by the exchange reaction, exists in NV and MV, amounting to 80 and 18% in the respective samples. In the case of F, it could not be determined exactly due to the too large scattering of the data. On heating in liquid D2O for 5 or 10 min., OD groups develop within C above 190 and 170°C in NV and MV, respectively. Above 190°C. the exchange is larger in NV than in MV. These OD groups within the pre-existing crystallites begin to disappear after treating with NaOH solution at the concentration at which cellulose begins to be converted to alkali cellulose I. The resistant OD groups developed within the amorphous and intermediate regions are rehydrogenated by the more dilute alkaline solutions.  相似文献   

3.
The diffusion process of deuterated water (D2O) in washi (Japanese traditional paper) was investigated by means of a deuterium exchange method and Fourier-transform near-infrared (FT-NIR) transmission spectroscopy. The samples were the modern (AD 2003) hand-made washi and those from an archival collection of cultural artifacts (AD 1791 and 1615). Four absorption bands were identified in the NIR spectral range from 7200 to 6000 cm−1 which are due to OH groups in the amorphous, semi-crystalline and two types of crystalline regions of cellulose. The accessibility of D2O increased with decreasing state of order of cellulose, and the saturation accessibility increased with the age of the samples. It was suggested that during aging hemicellulose, which forms a composite with cellulose in paper, was progressively hydrolyzed, resulting in the expansion of inter-molecular distance between cellulose chains. The oldest sample showed a low diffusion rate compared with the others. SEM observation of the textile structures indicated that the oldest sample had two layers due to beating. It was estimated that the tight surface layer blocked the diffusant in the initial stage of the diffusion process.  相似文献   

4.
The solid-phase nitration and acetylation processes of bacterial cellulose have been investigated mainly by CP/MAS 13C NMR spectroscopy to clarify the features of these reactions in relation to the characterization of the disordered component included in the microfibrils. CP/MAS 13C NMR spectra of bacterial and Valonia cellulose samples are markedly changed as the nitration progresses, in a similar way to the case of cotton linters previously reported; and the relative reactivity of the OH groups in the glucose residues is found to decrease in the order of O(6)H>O(2)H>O(3)H. Moreover, the nitration rate and mode greatly depend on the concentration of nitric acid in the reaction media. At dilute and medium concentrations, the O(6)H groups in the crystalline and disordered components are subjected to nitration at nearly the same rate, indicating that these two components are distributed almost at random in the entire region of each microfibril. The preferential penetration of nitric acid into each microfibril also occurs prior to nitration at the medium concentration, resulting in an increase in the mole fraction of the disordered component. In contrast, all OH groups undergo nitration very rapidly at the higher concentration, although nitration levels off to a certain extent for O(3)H groups. In solid-phase acetylation, no regio-selective reactivity is observed among the three kinds of OH groups, which may be due to the characteristic reaction that proceeds in a very thin layer between the acetylated and nonacetylated regions in each microfibril. The almost random distribution of the disordered component in the entire region of the microfibrils is also confirmed in this solid-phase acetylation. On the basis of these results, the mechanism of the solid-phase reactions and the microfibril structure are discussed.  相似文献   

5.
A five-step physiochemical pathway for the cyclic dehydrogenation and rehydrogenation of LiAlH4 from Li3AlH6, LiH, and Al was developed. The LiAlH4 produced by this physiochemical route exhibited excellent dehydrogenation kinetics in the 80-100 degrees C range, providing about 4 wt % hydrogen. The decomposed LiAlH4 was also fully rehydrogenated through the physiochemical pathway using tetrahydrofuran (THF). The enthalpy change associated with the formation of a LiAlH4.4THF adduct in THF played the essential role in fostering this rehydrogenation from the Li3AlH6, LiH, and Al dehydrogenation products. The kinetics of rehydrogenation was also significantly improved by adding Ti as a catalyst and by mechanochemical treatment, with the decomposition products readily converting into LiAlH4 at ambient temperature and pressures of 4.5-97.5 bar.  相似文献   

6.
It is suggested that the transformation from cellulose I to cellulose II during mercerization is the result of a progressive shift of the sheets of cellulose chains within the crystallites of a microfibril from the quarter-staggered relation in cellulose I to complete correspondence in cellulose II. Qualitatively, the results of such a shift would be consistent with the observed increases in lateral disorder, changes in cell dimensions, swelling, changes in infrared absorption, increases in reactivity of hydroxyl groups and especially with changes in the relative intensities of meridional, x-ray diffraction reflections of cellulose fibers. The consequences of such a shift also include variations of the dihedral angle at the glycosidic linkage to provide an opportunity for the conformational changes which have been deduced from Raman and infrared spectra. Such a shift may take place in the transformation of native celluloses with antiparallel structure as well as those with parallel polarity. It is consistent with and is able to explain examples of “memory” of previous treatment in cellulose samples.  相似文献   

7.
Wood pulp fiber consists of carbohydrate fibrils containing crystalline cellulose microfibrils of a few nanometer width. The structure of the fibril in water is currently unclear due to the difficulty of imaging pulp fiber in water at nanometer resolution. An alternative method is to observe the sample dried with a mild drying method to preserve the structure of the wet sample. In this study, we studied softwood kraft pulp fibers which were dried with various mild drying methods and then imaged by field emission scanning electron microscopy at nanometer resolution. Both mild dried samples, as well as air dried samples, showed 10–20 nm wide fibrils, the width of which corresponded to a crystalline cellulose microfibril or bundles of them. The mild dried sample, which was critical point dried with liquid CO2 (CPD), mainly showed 20–40 nm thick fibrils, in addition to the 10–20 nm fibrils. The existence of the thick fibril implies that the fibril itself has a swelling nature in water, although the possibility that the thick fibril was an artifact of the CPD process could not be excluded. Further investigation as to the extent that the thick fibrils found in the CPD samples reflect the nanostructure of pulp fiber in water is warranted.  相似文献   

8.
The cellulose microfibril assemblies in secondary cell walls of tension wood and compression wood were studied with vibrational sum frequency generation (SFG) spectroscopy. The tension wood contains the gelatinous layer with highly-crystalline and highly-aligned cellulose microfibrils. The SFG spectral features of tension wood changed depending on the azimuth angle between the polarization of the incident IR beam and the preferential alignment axis of the cellulose microfibrils. The SFG spectra of the compression wood did not show any dependence on the azimuth angle, implying that the overall orientation of cellulose microfibrils in compression wood is not highly aligned. Instead, the decrease of cellulose content in compression wood brought about larger separation between cellulose microfibrils, which was manifested as changes in CH2/OH intensity ratio in SFG spectra. These results implied that SFG spectral features are sensitive to cellulose microfibril alignments and inter-fibrillar separations.  相似文献   

9.
Infrared spectra of 2-chloro-6-fluorophenol in argon matrixes at 20 K revealed the presence of a "Cl-type" isomer, which has the OH···Cl hydrogen bond, but no "F-type" isomer with OH···F bonding, in striking contrast to the existence of both isomers in the gas and liquid phases at room temperature. This finding suggests that the F-type isomer changes to the more stable Cl-type one by hydrogen-atom tunneling in the matrixes. Similar experiments on the OD···X analog species were performed to confirm the tunneling isomerization, resulting in an O-D stretching band of the F-type isomer appearing as well as that of the Cl type, like the spectra reported in the gas and liquid phases. This implies that tunneling migration of the D atom is inhibited in the argon matrix. In addition, UV-induced photoreactions of 2-chloro-6-fluorophenol were studied by a joint use of matrix-isolation IR spectroscopy assisted by density functional theory calculations. It was found that 2-fluorocyclopentadienylidenemethanone and 4-chloro-2-fluorocyclohexadienone were produced from the Cl type; the former was by the Wolff rearrangement after dissociation of the H atom in the OH group and the Cl atom, and the latter was by intramolecular migration of the H and Cl atoms. As for the deuterated F-type isomer, however, 2-chlorocyclopentadienylidenemethanone was produced by the Wolff rearrangement after dissociation of the D atom in the OD group and the F atom, besides other photoproducts of the deuterated Cl-type isomer. It is thus concluded that the tunneling isomerization around the C-O bond occurs in the OH···X species but not in the OD···X species.  相似文献   

10.
One commonly cited factor that contributes to the recalcitrance of biomass is cellulose crystallinity. The present study aims to establish the effect of several pretreatment technologies on cellulose crystallinity, crystalline allomorph distribution, and cellulose ultrastructure. The observed changes in the cellulose ultrastructure of poplar were also related to changes in enzymatic hydrolysis, a measure of biomass recalcitrance. Hot-water, organo-solv, lime, lime-oxidant, dilute acid, and dilute acid-oxidant pretreatments were compared in terms of changes in enzymatic sugar release and then changes in cellulose ultrastructure measured by 13C cross polarization magic angle spinning nuclear magnetic resonance and wide-angle X-ray diffraction. Pretreatment severity and relative chemical depolymerization/degradation were assessed through compositional analysis and high-performance anion-exchange chromatography with pulsed amperometric detection. Results showed minimal cellulose ultrastructural changes occurred due to lime and lime-oxidant pretreatments, which at short residence time displayed relatively high enzymatic glucose yield. Hot water pretreatment moderately changed cellulose crystallinity and crystalline allomorph distribution, yet produced the lowest enzymatic glucose yield. Dilute acid and dilute acid-oxidant pretreatments resulted in the largest increase in cellulose crystallinity, para-crystalline, and cellulose-Iβ allomorph content as well as the largest increase in cellulose microfibril or crystallite size. Perhaps related, compositional analysis and Klason lignin contents for samples that underwent dilute acid and dilute acid-oxidant pretreatments indicated the most significant polysaccharide depolymerization/degradation also ensued. Organo-solv pretreatment generated the highest glucose yield, which was accompanied by the most significant increase in cellulose microfibril or crystallite size and decrease in relatively lignin contents. Hot-water, dilute acid, dilute acid-oxidant, and organo-solv pretreatments all showed evidence of cellulose microfibril coalescence.  相似文献   

11.
The biodegradation behavior of 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized cellulose fibers (TOCs) suspended in water and TEMPO-oxidized cellulose nanofibrils (TOCNs) dispersed in water by a commercial crude cellulase was studied. Products crude cellulase-treated for 0–7 days were separated into water/ethanol-insoluble and -soluble fractions. Weight recovery ratios and viscosity-average degrees of polymerization of the water/ethanol-insoluble fractions clearly decreased with crude cellulase-treatment time, showing that both TOCs and TOCNs have biodegradability. Water/ethanol-soluble fractions were subjected to size-exclusion chromatography (SEC) with photodiode array (PDA) detection to obtain SEC elution patterns detected by reflective index and UV spectra of each SEC pattern elution slice. SEC–PDA and 13C-NMR analyses showed that glucuronosyl unit-containing molecules present on microfibril surfaces in TOCs and TOCNs were primarily cleaved by hydrolyzing enzymes present as contaminants in the crude cellulase to form glucuronic acid as one of the major water-soluble degradation compounds. After the glucuronosyl units in TOCs and TOCNs were degraded and removed from microfibril surfaces by the hydrolyzing enzymes, cellulose chains newly exposed on the microfibril surfaces were rapidly hydrolyzed by cellulases predominantly present in the crude cellulase to form cellobiose. Both TOCs and TOCNs having sodium carboxyl groups are thus biodegradable, but TOCN having free carboxyl groups had clearly low biodegradability by the crude cellulase. Thus, biodegradation behavior may be controllable by controlling the structure of carboxyl group counter ions in TOCs and TOCNs.  相似文献   

12.
Previous studies of calculated diffraction patterns for cellulose crystallites suggest that distortions that arise once models have been subjected to molecular dynamics (MD) simulation are the result of both microfibril twisting and changes in unit cell dimensions induced by the empirical force field; to date, it has not been possible to separate the individual contributions of these effects. To provide a better understanding of how twisting manifests in diffraction data, the present study demonstrates a method for generating twisted and linear cellulose structures that can be compared without the bias of dimensional changes, allowing assessment of the impact of twisting alone. Analysis of unit cell dimensions, microfibril volume, hydrogen bond patterns, glycosidic torsion angles, and hydroxymethyl group orientations confirmed that the twisted and linear structures collected with this method were internally consistent, and theoretical powder diffraction patterns for the two were shown to be effectively indistinguishable. These results indicate that differences between calculated patterns for the crystal coordinates and twisted structures from MD simulation can result entirely from changes in unit cell dimensions, and not from microfibril twisting. Although powder diffraction patterns for models in the 81-chain size regime were shown to be unaffected by twisting, suggesting that a modest degree of twist is not inconsistent with available crystallographic data, it may be that other diffraction techniques are capable of detecting this structural difference. Until such time as definitive experimental evidence comes to light, the results of this study suggest that both twisted and linear microfibrils may represent an appropriate model for cellulose Iβ.  相似文献   

13.
Atomic force microscopy (AFM), tapping mode atomic force microscopy (TM-AFM) and transmission electron microscopy (TEM) have been used to image the cell wall, ultrathin sections of whole cells and cellulose microfibrils prepared from the green alga Micrasterias denticulata. Measurements of the microfibril dimensions are in agreement with earlier observations carried out by electron microscopy. Images at the molecular level of the surface of the microfibrils were obtained with AFM and show regular periodicities along the microfibril axis that correspond to the fibre and glucose repeat distances of cellulose. Twisted regions visible at intervals along the microfibrils dried down onto substrates were noted to be right-handed in over 100 observations by TEM, AFM and TM-AFM. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The aim of this work was to investigate the morphological and structural changes associated with mercerization of cellulose fibres with combined confocal Raman and atomic force microscopy (AFM). During mercerization the alkali induces a change in polymorphic lattice from cellulose I to II. This was observed by confocal Raman spectroscopy from cellulose samples treated with 10, 15 and 25% aqueous sodium hydroxide solution. AFM images from the same samples illustrated that microfibrils were swollen and more granular in cellulose II than in cellulose I. Raman spectral images in plane and depth directions showed that the polymorphous cellulose structure was uniform throughout the cell wall, whereas the microfibril orientation varied between fibre cell wall layers. The changes in microfibril orientation on the sample surfaces were confirmed by AFM images measured from the same sample position.  相似文献   

15.
We have succeeded in isolating nanostructures from never-dried cellulose wood pulp, in sheet-form that have sub-microfibril dimensions (single to double digit Å thickness with 100’s of nm in length). A recently developed oxidation procedure by Saito and co-workers (Biomacromolecules 2006, 7:1687–1691) combined with extensive ultrasonication was used to liberate nanoscale cellulose fibrils. We show structures, as determined with atomic force microscopy, that compose the well-known cellulose microfibril, which are tenfold thinner than previous reports on nanoscale celluloses. This work provides indirect evidence in support of, and is consistent with, the hypothesis that the intersheet van der Waals bonding of the cellulose fibril is significantly weaker than the intrasheet hydrogen bonding of the cellulose microfibril. The structures are facile to isolate, contain enormous specific surface area with rich chemical functionality providing potential for numerous novel applications.  相似文献   

16.
The interaction strength of sodium ions (Na(+)) with cellulose is investigated from first principles for varying degrees of water content. We find that the interaction of water molecules and Na(+) can be studied independently at the various OH groups in cellulose which we categorize as two different types. In the absence of water, Na(+) forms strong ionic bonds with the OH groups of cellulose. When water molecules are anchored to the OH groups via hydrogen bonds, Na(+) can eventually no longer bind to the OH groups, but will instead interact with the oxygen atoms of the water molecules. Due to the rather weak attachment of the latter to the OH groups, Na(+) becomes effectively more mobile in the fully hydrated cellulose framework. The present study thus represents a significant step toward a first-principles understanding of the experimentally observed dependence of ionic conductivity on the level of hydration in cellulose network.  相似文献   

17.
Novel molecularly smooth, flat and thin films of regenerated bio-deuterated cellulose were produced for enhanced contrast with adsorbed molecules in neutron reflectivity (NR) and for cellulose structure studies. The cellulose films were produced to study both the solid/air interface and the solid/liquid interface. Cellulose films with a wide range of scattering contrast were achieved by combining exchange of 1H for deuterium on hydroxyl groups via water in the liquid phase and via biosynthesis of deuterated bacterial cellulose by Gluconacetobacter xylinus which can deuterate the hydrogens bonded to carbon atoms in cellulose. The deuterated cellulose combined with NR will help to provide new information on the interaction of various (bio)-macromolecules and cellulose. This includes quantifying and visualizing the density profile of polymers and biomolecules adsorbed onto cellulose surface. The potential of this material for IR studies of materials adsorbed to cellulose films is briefly discussed.  相似文献   

18.
The structure of cellulose microfibrils in situ in wood from the dicotyledonous (hardwood) species cherry and birch, and the vascular tissue from sunflower stems, was examined by wide-angle X-ray and neutron scattering (WAXS and WANS) and small-angle neutron scattering (SANS). Deuteration of accessible cellulose chains followed by WANS showed that these chains were packed at similar spacings to crystalline cellulose, consistent with their inclusion in the microfibril dimensions and with a location at the surface of the microfibrils. Using the Scherrer equation and correcting for considerable lateral disorder, the microfibril dimensions of cherry, birch and sunflower microfibrils perpendicular to the [200] crystal plane were estimated as 3.0, 3.4 and 3.3 nm respectively. The lateral dimensions in other directions were more difficult to correct for disorder but appeared to be 3 nm or less. However for cherry and sunflower, the microfibril spacing estimated by SANS was about 4 nm and was insensitive to the presence of moisture. If the microfibril width was 3 nm as estimated by WAXS, the SANS spacing suggests that a non-cellulosic polymer segment might in places separate the aggregated cellulose microfibrils.  相似文献   

19.
Cellulose isolated from celery collenchyma is typical of the low-crystallinity celluloses that can be isolated from primary cell-walls of higher plants, except that it is oriented with high uniformity. The diameter of the microfibrils of celery collenchyma cellulose was estimated by three separate approaches: 13C NMR measurement of the ratio of surface to interior chains; estimation of the dimensions of the crystalline lattice from wide angle X-ray scattering (WAXS) measurements using the Scherrer equation; and the observation that microfibrils of this form of cellulose have the unusual property of packing into an irregular array from which small angle X-ray scattering (SAXS) shows features of both form and interference functions. The interference function contributing to the SAXS pattern implied a mean microfibril centre-to-centre distance of 3.6 nm, providing an upper limit for the diameter. However modelling of the scattering pattern from an irregular array of microfibrils showed that the observed scattering curve could be matched at a range of diameters down to 2.4 nm, with the intervening space more or less sparsely occupied by hemicellulose chains. The lateral extent of the crystalline lattice normal to the 200 plane was estimated as a minimum of 2.4 nm by WAXS through the Scherrer equation, and a diameter of 2.6 nm was implied by the surface: volume ratio determined by 13C NMR. The WAXS and NMR measurements both depended on the assumption that the surface chains were positioned within an extension of the crystalline lattice. The reliability of this assumption is uncertain. If the surface chains deviated from the lattice, both the WAXS and the NMR data would imply larger microfibril diameters within the range consistent with the SAXS pattern. The evidence presented is therefore all consistent with microfibril diameters from about 2.4 to 3.6 nm, larger than has previously been suggested for primary-wall cellulose. Some degree of aggregation may have occurred during the isolation of the cellulose, but the larger microfibril diameters within the range proposed are a consequence of the novel interpretation of the experimental data from WAXS and NMR and are consistent with previously published data if these are similarly interpreted.  相似文献   

20.
The conformational changes in 2,4,6 triodophenol along the internal rotation itinerary of the OH and OD groups have been studied by infrared and Raman spectroscopy. It is shown that the tilt angle between the CO bond and the aromatic plane undergoes a remarkable variation when the hydroxyl group is deuterated. The hindered rotation potential function associated to the torsional motion has been determined. Tentative assignments for the ψaso → ψas1 and ψSo → ψas1 transitions corresponding to the inversion of the OH and OD groups are also carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号