首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative analysis of recent literature data on hydrophilization of semiconductor quantum dots, which are actively used at present in various fields, has been performed. The main methods of preparation of hydrophilic quantum dots are considered: synthesis of the particles in aqueous solutions; replacement of hydrophobic ligands with hydrophilic ligands in the shells stabilizing the particles; creation of a second, water-soluble shell around the hydrophobic particles; and various methods of post-preparative treatment to improve photoluminescent properties of quantum dots.  相似文献   

2.
Semiconductor quantum dots are inorganic nanoparticles with unique photophysical properties. In particular, their huge one- and two-photon absorption cross sections, tunable emission bands and excellent photobleaching resistances are stimulating the development of luminescent probes for biomedical imaging and sensing applications. Indeed, electron and energy transfer processes can be designed to switch the luminescence of semiconductor quantum dots in response to molecular recognition events. On the basis of these operating principles, the presence of target analytes can be transduced into detectable luminescence signals. In fact, luminescent chemosensors based on semiconductor quantum dots are starting to be developed to detect small molecules, monitor DNA hybridization, assess protein-ligand complementarities, test enzymatic activity and probe pH distributions. Although fundamental research is still very much needed to understand further the fundamental factors regulating the behavior of these systems and refine their performance, it is becoming apparent that sensitive probes based on semiconductor quantum dots will become invaluable analytical tools for a diversity of applications in biomedical research.  相似文献   

3.
Peptide-mediated internalization and organelle targeting of quantum dots.  相似文献   

4.
5.
Large-scale synthesis of semiconductor nanocrystals or quantum dots (QDs) with high concentration and high yield through simultaneously increasing the precursor concentration was introduced. This synthetic route conducted in diesel has produced gram-scale CdSe semiconductor quantum dots (In optimal scale-up synthetic condition, the one-pot yield of QDs is up to 9.6g). The reaction has been conducted in open air and at relatively low temperature at 190-230 degrees C in the absence of expensive organic phosphine ligands, aliphatic amine and octadecene, which is really green chemistry without high energy cost for high temperature reaction and unessential toxic chemicals except for Cd, which is the essential building block for QDs.  相似文献   

6.
The light-induced spectral diffusion and fluorescence intermittency (blinking) of semiconductor nanocrystal quantum dots are investigated theoretically using a diffusion-controlled electron-transfer (DCET) model, where a light-induced one-dimensional diffusion process in energy space is considered. Unlike the conventional electron-transfer reactions with simple exponential kinetics, the model naturally leads to a power-law statistics for the intermittency. We formulate a possible explanation for the spectral broadening and its proportionality to the light energy density, the -32 power law for the blinking statistics of the fluorescence intermittency, the breakdown of the power-law behavior with a bending tail for the "light" periods, a lack of bending tail for the "dark" periods (but would eventually appear at later times), and the dependence of the bending tail on light intensity and temperature. This DCET model predicts a critical time t(c) (a function of the electronic coupling strength and other quantities), such that for times shorter than t(c) the exponent for the power law is -12 instead of -32. Quantitative analyses are made of the experimental data on spectral diffusion and on the asymmetric blinking statistics for the "on" and "off" events. Causes for deviation of the exponent from the ideal value of -32 are also discussed. Several fundamental properties are determined from the present experimental data, the diffusion correlation time, the Stokes shift, and a combination of other molecular-based quantities. Specific experiments are suggested to test the model further, extract other molecular properties, and elucidate more details of the light-induced charge-transfer dynamics in quantum dots.  相似文献   

7.
The formation of nanoassemblies of CdSe/ZnS quantum dots (QD) and pyridyl-substituted free-base porphyrin (H(2)P) molecules has been spectroscopically identified by static and time-resolved techniques. The formation of nanoassemblies has been engineered by controlling the type and geometry of the H(2)P molecules. Pyridyl functionalization gives rise to a strong complex formation accompanied by QD photoluminescence (PL) quenching. For some of the systems, this quenching is partly related to fluorescence resonance energy transfer (FRET) from the QD to H(2)P and can be explained according to the F?rster model. The quantitative interpretation of PL quenching due to complexation reveals that (i) on average only about (1)/(5) of the H(2)P molecules at a given H(2)P/QD molar ratio are assembled on the QD and (ii) only a limited number of "vacancies" accessible for H(2)P attachment exist on the QD surface.  相似文献   

8.
Conjugation of the cell-penetrating peptide derived from the human immunodeficiency virus-1 transactivator protein (TAT) to semiconductor quantum dots (QDs) is an effective way to enhance transmembrane delivery of QDs for intracellular and molecular imaging. In this work, the internalization pathway of TAT-QDs was studied systematically in living cells. Cellular uptake of TAT-QDs, under different endocytosis-inhibiting conditions, was compared by fluorescence imaging and flow cytometry. The results suggest TAT-QDs internalize through lipid-raft-dependent macropinocytosis, which is different from that of FITC-labeled TAT. They also provide new information for better understanding of the TAT-mediated cell uptake mechanism.  相似文献   

9.
This review examines recent work on the synthesis, characterisation and potential applications of semiconductor nanoparticles (quantum dots). Recent advances in single quatum dot spectroscopy is also reviewed.  相似文献   

10.
Semiconductor quantum dots (QDs) exhibit unique optical and photophysical properties. These features are implemented to develop optical molecular sensor systems. The review addresses the methods to functionalize the QDs with chemical capping layers that enable the use of the resulting hybrid structures for sensing, and discusses the photophysical mechanisms being applied in the different sensor systems. Different methods to design the chemically-modified QDs hybrid structures for sensing low-molecular-weight substrates, metal ions, anions and gases are presented. These include the functionalization of the QDs with ligands that bind ions, the modification of the QDs with substrate-specific ligands or receptor units, and the chemical modification of the QDs upon sensing. Specific emphasis is directed to describe the cooperative catalytic functions of the QDs in the sensing processes, and to address the function of sensing with logic-gate operations.  相似文献   

11.
Water-soluble silica-overcoated CdS:Mn/ZnS semiconductor quantum dots   总被引:2,自引:0,他引:2  
Highly luminescent and photostable CdS:Mn/ZnS core/shell quantum dots are not water soluble because of their hydrophobicity. To create water-soluble quantum dots by an appropriate surface functionalization, CdS:Mn/ZnS quantum dots synthesized in a water-in-oil (W/O) microemulsion system (reverse micelles) were consecutively overcoated with a very thin silica layer ( approximately 2.5 nm thick) within the same reverse micellar system. The water droplet serves as a nanosized reactor for the controlled hydrolysis and condensation of a silica precursor, tetraethyl orthosilicate (TEOS), using an ammonium hydroxide (NH4OH) catalyst. Structural characterizations with transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) indicate that the silica-quantum dot nanocomposites consist of a layered structure. Owing to the amorphous, porous nature of a silica layer, the optical and photophysical properties of silica-overcoated CdS:Mn/ZnS quantum dots are found to remain close to those of uncoated counterparts.  相似文献   

12.
Various MX (M = Cd, Zn, and Mn, X = S and Se) semiconductor quantum dots (QDs) were prepared in zeolite Y. While the QDs are readily expelled from zeolite interior upon exposure of the MX QD-incorporating zeolite Y ([MX]-Y) to the ambient atmosphere due to moisture adsorption, they remain tightly confined within zeolites even after exposure to the moist atmosphere for several weeks when the surfaces were silylated with various silylating agents. This methodology will facilitate the characterization of the zeolite-encapsulated QDs and the application of QD-incorporating zeolites.  相似文献   

13.
14.
We report the preparation of PbI2 clusters of sizes less than 30 Å by colloidal routes and characterization by optical absorption spectra. We show that the blue-shifted absorption spectra are not due to the presence of I3 ions, as suggested previously, but are characteristic of the clusters present. We also show that similar sized clusters form, though sparingly, on dissolving bulk PbI2 in the solvents. We establish that the stability of a large concentration of these clusters in the colloidal process is due to the presence of excess iodine ions attached to the microcrystallites.  相似文献   

15.
Cell-penetrating peptides (CPPs) have rapidly become a mainstay technology for facilitating the delivery of a wide variety of nanomaterials to cells and tissues. Currently, the library of CPPs to choose from is still limited, with the HIV TAT-derived motif still being the most used. Among the many materials routinely delivered by CPPs, nanoparticles are of particular interest for a plethora of labeling, imaging, sensing, diagnostic, and therapeutic applications. The development of nanoparticle-based technologies for many of these uses will require access to a much larger number of functional peptide motifs that can both facilitate cellular delivery of different types of nanoparticles to cells and be used interchangeably in the presence of other peptides and proteins on the same surface. Here, we evaluate the utility of four peptidyl motifs for their ability to facilitate delivery of luminescent semiconductor quantum dots (QDs) in a model cell culture system. We find that an LAH4 motif, derived from a membrane-inserting antimicrobial peptide, and a chimeric sequence that combines a sweet arrow peptide with a portion originating from the superoxide dismutase enzyme provide effective cellular delivery of QDs. Interestingly, a derivative of the latter sequence lacking just a methyl group was found to be quite inefficient, suggesting that even small changes can have significant functional outcomes. Delivery was effected using 1 h incubation with cells, and fluorescent counterstaining strongly suggests an endosomal uptake process that requires a critical minimum number or ratio of peptides to be displayed on the QD surface. Concomitant cytoviability testing showed that the QD–peptide conjugates are minimally cytotoxic in the model COS-1 cell line tested. Potential applications of these peptides in the context of cellular delivery of nanoparticles and a variety of other (bio)molecules are discussed.
Figure
?  相似文献   

16.
Single-molecule spectroscopy of turn-on quantum dots induced by NADPH-dependent biocatalyzed transformations reveals that the fluorescence intensities of quantum dots functionalized with Nile Blue are stepwisely and reversibly changed in the presence of NADPH.  相似文献   

17.
We demonstrate the feasibility of fabrication of semiconducting nanowires (quantum dots) using F-actin as a template. Three different approaches of assembling quantum dots into nanowires are described. The nanowires were characterized by fluorescence microscopy.  相似文献   

18.
The energetics and dynamics of multiply excited states in single material colloidal quantum dots have already been shown to exhibit universal trends. Here we attempt to identify similar trends in exciton-exciton interactions within compound colloidal quantum dots. For this end, we thoroughly review previously available data and also present experimental data on several newly synthesized systems, focusing on core/shell nanocrystals with a type-II band alignment. A universal condition for the transition from binding to repulsion of the biexciton (type-I-type-II transition) is established in terms of the change in the exciton radiative lifetime. A scaling rule is also presented for the magnitude of exciton-exciton repulsion. In contrast, we do not identify a clear universal scaling of the non-radiative Auger recombination lifetime of the biexciton state. Finally, a perspective on future applications of engineered multiexcitonic states is presented.  相似文献   

19.
20.
In this study, the application of graphene quantum dots (GQDs) and doped GQDs as potential carriers for the delivery of isoniazid (Iso) drug has been investigated, using density functional theory (DFT) calculations. For this purpose, the hexa-peri-hexabenzocoronene (as a GQD model) and its BN-, BP-, AlN-, and AlP-doped (C36X3Y3H18 where X = B, Al and Y = N, P) forms were selected. Our results indicated that the adsorption energies of isoniazid on doped GQDs were more negative than that of pure GQD. Moreover, the calculations showed that adsorption of isoniazid on AlN- and AlP-doped GQDs was thermodynamically favorable. The dipole moments of BP-, AlN-, and AlP-doped GQDs were much greater (5.799, 1.860, and 3.312 D, respectively) than that of pristine GQD (0 D). The AlN-Iso and AlP-Iso complexes had small energy gaps, low chemical potentials, and low global hardnesses, which were appropriate for their attachments to the target site. The nature of interactions was analyzed by the quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) analyses. Overall, the results confirmed that the AlN- and AlP-doped GQDs could be used as potential carriers for drug delivery application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号