共查询到20条相似文献,搜索用时 0 毫秒
1.
Pinhasov A Mei J Amaratunga D Amato FA Lu H Kauffman J Xin H Brenneman DE Johnson DL Andrade-Gordon P Ilyin SE 《Combinatorial chemistry & high throughput screening》2004,7(2):133-140
To meet growing needs for high throughput gene expression profiling, we established a new automated high throughput TaqMan RT-PCR method for quantitative mRNA expression analysis. In this method, the Allegro( trade mark ) (Zymark) system conducts all sample tracking and liquid handling steps, and ABI PRISM 7900 HT (Applied Biosystems) is used to conduct real-time determination of the C(t) value when amplification of PCR products is first detected and accumulation of inhibitory PCR products is unlikely to occur. The ABI PRISM 7900 HT Sequence Detection System features a real-time PCR instrument with 384-well-plate compatibility and robotic loading, and continuous wavelength detection, which enables the use of multiple fluorophores in a single reaction. The Allegro System offers an assembly line approach with a modular design that allows reconfiguration of the components to accommodate variations in the assay flow. In the present study, we have established and validated a new automated High Throughput (HT) TaqMan RT-PCR- based method for quantitative mRNA expression analysis. The data demonstrate that HT-Taqman PCR is a powerful tool that can be used for measuring low concentrations of mRNA, and is highly accurate, reproducible, and amenable to high throughput analysis. Results suggest that HT-TaqMan is a reliable method for the quantification of low-expression genes and a powerful tool with HT capability for target identification/validation, structure-activity relationship (SAR) study, compound selection for efficacy studies, and biomarker identification in drug discovery and development. 相似文献
2.
3.
This review summarizes recent progress in the development and application of solid electrodes to the screening of pharmaceutical dosage forms and biological fluids. Recent trends and advances in the electroanalytical chemistry of solid electrodes, microelectrodes and electrochemical sensors are reviewed. The varieties of solid electrodes and their basic physico-chemical properties and some specific characteristics including some supramolecular phenomena at their surface are surveyed. This review also includes some selected designs and their applications. Despite many reviews about individual solid electrodes in the literature, this review offers the first comprehensive report on all forms of solid electrodes. Special attention is paid to the possibilities of solid electrodes in high throughput electroanalytical investigation of drug dosage forms and biological samples using modern electroanalytical techniques. Various selected studies on these subjects since 1996 are reviewed in this paper. 相似文献
4.
Lee HS Choi J Kufareva I Abagyan R Filikov A Yang Y Yoon S 《Journal of chemical information and modeling》2008,48(3):489-497
Receptor flexibility is a critical issue in structure-based virtual screening methods. Although a multiple-receptor conformation docking is an efficient way to account for receptor flexibility, it is still too slow for large molecular libraries. It was reported that a fast ligand-centric, shape-based virtual screening was more consistent for hit enrichment than a typical single-receptor conformation docking. Thus, we designed a "distributed docking" method that improves virtual high throughput screening by combining a shape-matching method with a multiple-receptor conformation docking. Database compounds are classified in advance based on shape similarities to one of the crystal ligands complexed with the target protein. This classification enables us to pick the appropriate receptor conformation for a single-receptor conformation docking of a given compound, thereby avoiding time-consuming multiple docking. In particular, this approach utilizes cross-docking scores of known ligands to all available receptor structures in order to optimize the algorithm. The present virtual screening method was tested for reidentification of known PPARgamma and p38 MAP kinase active compounds. We demonstrate that this method improves the enrichment while maintaining the computation speed of a typical single-receptor conformation docking. 相似文献
5.
Bosserhoff AK Buettner R Hellerbrand C 《Combinatorial chemistry & high throughput screening》2000,3(6):455-466
Diagnosis of inherited diseases or cancer predispositions frequently involves determination of specific mutations or polymorphisms. The number of characterized monogenetic and polygenetic diseases is significantly rising every year. As a result, an increasing number of patient samples with a rising complexity of genetic diseases require molecular diagnostics. In order to apply genetic analyses to large groups of patients or population screening, automation of a sensitive and precise method is highly desirable. Capillary electrophoresis (CE) facilitates the development of methods which can rapidly process large number of patient samples in an automated fashion. In contrast, conventional techniques including Southern blotting, sequencing or standard gel electrophoresis are time consuming, cost ineffective and require substantial amounts of each specimen. Robustness, ease of operation, good reproducibility and low cost are the main advantages of CE. Currently, most protocols adapted to automated CE represent (i) analyses of DNA fragment length or DNA restriction patterns (RFLP), (ii) analyses of single-strand conformation polymorphism (SSCP) and (iii) microsatellite analyses. Recently, automated detection of variations in the FRAXA (CGG)n region (fragile X syndrome), LDL receptor gene, p53 gene, MTHFR (methylenetetrahydrofolate reductase) gene, HFE gene and others has been established on CE systems. These applications clearly demonstrate the suitability of CE for high throughput screening in medical applications. 相似文献
6.
High throughput in silico methods have offered the tantalizing potential to drastically accelerate the drug discovery process. Yet despite significant efforts expended by academia, national labs and industry over the years, many of these methods have not lived up to their initial promise of reducing the time and costs associated with the drug discovery enterprise, a process that can typically take over a decade and cost hundreds of millions of dollars from conception to final approval and marketing of a drug. Nevertheless structure-based modeling has become a mainstay of computational biology and medicinal chemistry, helping to leverage our knowledge of the biological target and the chemistry of protein-ligand interactions. While ligand-based methods utilize the chemistry of molecules that are known to bind to the biological target, structure-based drug design methods rely on knowledge of the three-dimensional structure of the target, as obtained through crystallographic, spectroscopic or bioinformatics techniques. Here we review recent developments in the methodology and applications of structure-based and ligand-based methods and target-based chemogenomics in Virtual High Throughput Screening (VHTS), highlighting some case studies of recent applications, as well as current research in further development of these methods. The limitations of these approaches will also be discussed, to give the reader an indication of what might be expected in years to come. 相似文献
7.
Buchholz CJ Duerner LJ Funke S Schneider IC 《Combinatorial chemistry & high throughput screening》2008,11(2):99-110
Retroviruses distinguish themselves from all other mammalian viruses by their abilities to infect and propagate in mammalian cells without causing a cytopathic effect and to stably integrate their genetic information into the genome of the host cell. These unique properties make them an ideal platform for the display and directed evolution of proteins in a mammalian cell environment. This review will describe the essentials about retrovirus biology and then discuss in detail display and screening strategies that have been developed during the past 15 years of retroviral display technology. 相似文献
8.
9.
10.
In this paper we introduce a quantitative model that relates chemical structural similarity to biological activity, and in particular to the activity of lead series of compounds in high-throughput assays. From this model we derive the optimal screening collection make up for a given fixed size of screening collection, and identify the conditions under which a diverse collection of compounds or a collection focusing on particular regions of chemical space are appropriate strategies. We derive from the model a diversity function that may be used to assess compounds for acquisition or libraries for combinatorial synthesis by their ability to complement an existing screening collection. The diversity function is linked directly through the model to the goal of more frequent discovery of lead series from high-throughput screening. We show how the model may also be used to derive relationships between collection size and probabilities of lead discovery in high-throughput screening, and to guide the judicious application of structural filters. 相似文献
11.
Taipa MA 《Combinatorial chemistry & high throughput screening》2008,11(4):325-335
In the demanding field of proteomics, there is an urgent need for affinity-catcher molecules to implement effective and high throughput methods for analysing the human proteome or parts of it. Antibodies have an essential role in this endeavour, and selection, isolation and characterisation of specific antibodies represent a key issue to meet success. Alternatively, it is expected that new, well-characterised affinity reagents generated in rapid and cost-effective manners will also be used to facilitate the deciphering of the function, location and interactions of the high number of encoded protein products. Combinatorial approaches combined with high throughput screening (HTS) technologies have become essential for the generation and identification of robust affinity reagents from biological combinatorial libraries and the lead discovery of active/mimic molecules in large chemical libraries. Phage and yeast display provide the means for engineering a multitude of antibody-like molecules against any desired antigen. The construction of peptide libraries is commonly used for the identification and characterisation of ligand-receptor specific interactions, and the search for novel ligands for protein purification. Further improvement of chemical and biological resistance of affinity ligands encouraged the "intelligent" design and synthesis of chemical libraries of low-molecular-weight bio-inspired mimic compounds. No matter what the ligand source, selection and characterisation of leads is a most relevant task. Immunological assays, in microtiter plates, biosensors or microarrays, are a biological tool of inestimable value for the iterative screening of combinatorial ligand libraries for tailored specificities, and improved affinities. Particularly, enzyme-linked immunosorbent assays are frequently the method of choice in a large number of screening strategies, for both biological and chemical libraries. 相似文献
12.
13.
Recent advances in high throughput screening for ADME properties 总被引:2,自引:0,他引:2
With the increase in the numbers of molecules synthesized in a typical drug discovery program, as well as the large amount of information utilized in the selection of a drug candidate, there is a need for a plethora of drug metabolism and pharmacokinetic (DMPK) information to be regularly generated in discovery. Over the past decade, many in vitro, and even in vivo, DMPK screens have been developed and routinely deployed to generate this information in support of drug discovery efforts. In the past few years, newer methods, or adaptations to methods, have been published, and this review attempts to summarize these advances. In particular, advances have been reported for experimental approaches to metabolic clearance, CYP inhibition, in vivo exposure, and distribution, as well as in silico determinations of absorption, distribution, metabolism, and excretion (ADME) properties. Bioanalytical approaches aimed at optimizing analyte method development, sample preparation, and analyte detection, have also been reported. Future advances will further improve the ability to make decisions on molecules earlier in drug discovery. 相似文献
14.
Natalia Tong-Ochoa Kari Kopra Markku Syrjänpää Nicolas Legrand Harri Härmä 《Analytica chimica acta》2015
Protein post-translational modifications (PTMs) are regulatory mechanisms carried out by different enzymes in a cell. Kinase catalyzed phosphorylation is one of the most important PTM affecting the protein activity and function. We have developed a single-label quenching resonance energy transfer (QRET) assay to monitor tyrosine phosphorylation in a homogeneous high throughput compatible format. Epidermal growth factor receptor (EGFR) induced phosphorylation was monitored using Eu3+-chelate labeled peptide and label-free phosphotyrosine specific antibody in presence of a soluble quencher molecule. In the QRET kinase assay, antibody binding to phosphorylated Eu3+-peptide protects the Eu3+-chelate from luminescence quenching, monitoring high time-resolved luminescence (TRL) signals. In the presence of specific kinase inhibitor, antibody recognition and Eu3+-chelate protection is prevented, allowing an efficient luminescence quenching. The assay functionality was demonstrated with a panel of EGFR inhibitors (AG-1478, compound 56, erlotinib, PD174265, and staurosporine). The monitored IC50 values ranged from 0.08 to 155.3 nM and were comparable to those found in the literature. EGFR activity and inhibition assays were performed using low nanomolar enzyme and antibody concentration in a 384-well plate format, demonstrating its compatibility for high throughput screening (HTS). 相似文献
15.
Yoon S Smellie A Hartsough D Filikov A 《Journal of computer-aided molecular design》2005,19(7):483-497
Summary Structure-based screening using fully flexible docking is still too slow for large molecular libraries. High quality docking
of a million molecule library can take days even on a cluster with hundreds of CPUs. This performance issue prohibits the
use of fully flexible docking in the design of large combinatorial libraries. We have developed a fast structure-based screening
method, which utilizes docking of a limited number of compounds to build a 2D QSAR model used to rapidly score the rest of
the database. We compare here a model based on radial basis functions and a Bayesian categorization model. The number of compounds
that need to be actually docked depends on the number of docking hits found. In our case studies reasonable quality models
are built after docking of the number of molecules containing 50 docking hits. The rest of the library is screened by the
QSAR model. Optionally a fraction of the QSAR-prioritized library can be docked in order to find the true docking hits. The
quality of the model only depends on the training set size – not on the size of the library to be screened. Therefore, for
larger libraries the method yields higher gain in speed no change in performance. Prioritizing a large library with these
models provides a significant enrichment with docking hits: it attains the values of 13 and 35 at the beginning of the score-sorted
libraries in our two case studies: screening of the NCI collection and a combinatorial libraries on CDK2 kinase structure.
With such enrichments, only a fraction of the database must actually be docked to find many of the true hits. The throughput
of the method allows its use in screening of large compound collections and in the design of large combinatorial libraries.
The strategy proposed has an important effect on efficiency but does not affect retrieval of actives, the latter being determined
by the quality of the docking method itself.
Electronic supplementary material is available at http://dx.doi.org/10.1007/s10822-005-9002-6. 相似文献
16.
In the last decades, the basic techniques of microfluidics for the study of cells such as cell culture, cell separation, and cell lysis, have been well developed. Based on cell handling techniques, microfluidics has been widely applied in the field of PCR (Polymerase Chain Reaction), immunoassays, organ-on-chip, stem cell research, and analysis and identification of circulating tumor cells. As a major step in drug discovery, high-throughput screening allows rapid analysis of thousands of chemical, biochemical, genetic or pharmacological tests in parallel. In this review, we summarize the application of microfluidics in cell-based high throughput screening. The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode. We also discuss the future development of microfluidic based high throughput screening platform for drug discovery. 相似文献
17.
18.
Yin J Liu F Schinke M Daly C Walsh CT 《Journal of the American Chemical Society》2004,126(42):13570-13571
A new strategy for monovalently displaying small molecules on phage surfaces was developed and applied to high throughput screening for molecules with high binding affinity to the target protein. Peptidyl carrier protein (PCP) excised from nonribosomal peptide synthetase was monovalently displayed on the surface of M13 phage as pIII fusion proteins. Small molecules of diverse structures were conjugated to coenzyme A (CoA) and then covalently attached to the phage displayed PCP by Sfp phosphopantetheinyl transferase. Because Sfp is broadly promiscuous for the transfer of small molecule linked phosphopantetheinyl moieties to apo PCP domains, this approach will enable displaying libraries of small molecules on phage surfaces. Unique 20-base-pair (bp) DNA sequences were also incorporated into the phagemid DNA so that each compound displayed on the phage surface was encoded by a DNA bar code encapsulated inside the phage coat protein. Single round selection of phage displayed small molecules achieved more than 2000-fold enrichment of small molecules with nM binding affinity to the target protein. The selection process is further accelerated by the use of DNA decoding arrays for identifying the selected small molecules. 相似文献
19.
Cell-based screening systems for pharmaceuticals are desired over molecular biosensing systems because of the information
they provide on toxicity and bioavailability. However, the majority of sensing systems developed are molecular biosensing
type screening systems and cannot be easily adapted to cell-based screening. In this study, we demonstrate that protein-based
molecular sensing systems that employ a fluorescent protein as a signal transducer are amenable to cell-based sensing by expressing
the protein molecular sensing system in the cell and employing these cells for screening of desired molecules. To achieve
this, we expressed a molecular sensing system based on the fusion protein of calmodulin (CaM) and enhanced green fluorescent
protein (EGFP) in bacterial cells, and utilized these cells for the screening of CaM antagonists. In the presence of Ca2+, CaM undergoes a conformational change exposing a hydrophobic pocket that interacts with CaM-binding proteins, peptides,
and drugs. This conformational change induced in CaM leads to a change in the microenvironment of EGFP, resulting in a change
in its fluorescence intensity. The observed change in fluorescence intensity of EGFP can be correlated to the concentration
of the analyte present in the sample. Dose-response curves for various tricyclic antidepressants were generated using cells
containing CaM-EGFP fusion protein. Additionally, we demonstrate the versatility of our system for studying protein-protein
interactions by using cells to study the binding of a peptide to CaM. The study showed that the CaM-EGFP fusion protein within
the intact cells responds similarly to that of the isolated fusion protein, hence eliminating the need for any isolation and
purification steps. We have demonstrated that this system can be used for the rapid screening of various CaM antagonists that
are potential antipsychotic drugs. 相似文献