首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methyl ethyl ketone peroxide (MEKPO) is an unstable material above certain limits of temperature, decomposing into chain reactions by radicals. The influence of runaway reactions on this basic characteristic was assessed by evaluating kinetic parameters, such as activation energy (E a ), frequency factor (A), etc., by thermal activity monitor III (TAM III). This was done under three isothermal conditions of 70, 80, and 90 °C, with MEKPO 31 mass% combined with nitric acid (HNO3 6 N) and sodium nitrate (NaNO3 6 N). Nitric acid mixed with MEKPO gave the maximum heat of reaction (△H d ) and also induced serious reactions in the initial stage of exothermic process under the three isothermal temperatures. The time to maximum rate (TMR) also decreased when HNO3 was mixed with MEKPO. Thus, MEKPO combined with HNO3 6 N forms a very hazardous mixture. Results of this study will be provided to relevant plants for alerting their staff on adopting best practices in emergency response or accident control.  相似文献   

2.
Dicumyl peroxide (DCPO) is usually employed as an initiator for polymerization, a source of free radicals, a hardener, and a linking agent. In Asia, due to its unstable reactive nature, DCPO has caused many thermal explosions and runaway reaction incidents in the manufacturing process. This study was conducted to elucidate its essentially thermal hazard characteristics. In order to analyze the runaway behavior of DCPO in a batch reactor, thermokinetic parameters, such as heat of decomposition (ΔH d) and exothermic onset temperature (T 0), were measured via differential scanning calorimetry (DSC). Thermal runaway phenomena were then thoroughly investigated by DSC. The thermokinetics of DCPO mixed with acids or bases were determined by DSC, and the experimental data were compared with kinetics-based curve fitting of thermal safety software (TSS). Solid thermal explosion (STE) and liquid thermal explosion (LTE) simulations of TSS were applied to determine the fundamental thermal explosion behavior in large tanks or drums. Results from curve fitting indicated that all of the acids or bases could induce exothermic reactions at even an earlier stage of the experiments. In order to diminish the extent of hazard, hazard information must be provided to the manufacturing process. Thermal hazard of DCPO mixed with nitric acid (HNO3) was more dangerous than with other acids including sulfuric acid (H2SO4), phosphoric acid (H3PO4), and hydrochloric acid (HCl). By DSC, T 0, heat of decomposition (ΔH d), and activation energy (E a) of DCPO mixed with HNO3 were calculated to be 70 °C, 911 J g−1, and 33 kJ mol−1, respectively.  相似文献   

3.
Tert-butyl peroxybenzoate (TBPB) is one of the sensitive and hazardous chemicals which have been popularly employed in petrifaction industries in the past. This study attempted to elucidate its unsafe characteristics and thermally sensitive structure so as to help prevent runaway reactions, fires or explosions in the process environment. We employed differential scanning calorimetry (DSC) to assess the kinetic parameters (such as exothermic onset temperature (T 0), heat of reaction (ΔH), frequency factor (A)), and the other safety parameters using four different scanning rates (1, 2, 4 and 10°C min−1) combined with curve-fitting method. The results indicated that TBPB becomes very dangerous during decomposition reactions; the onset temperature and reaction heat were about 100°C and 1300 J g−1, respectively. Through this study, TBPB accidents could be reduced to an accepted level with safety parameters under control. According to the findings in the study and the concept of inherent safety, TBPB runaway reactions could be thoroughly prevented in the relevant plants.  相似文献   

4.
Lauroyl peroxide (LPO) is a typical organic peroxide that has caused many thermal runaway reactions and explosions. Differential scanning calorimetry (DSC) was employed to determine the fundamental thermokinetic parameters that involved exothermic onset temperature (T0), heat of decomposition (ΔHd), and other safety parameters for loss prevention of runaway reactions and thermal explosions. Frequency factor (A) and activation energy (Ea) were calculated by Kissinger model, Ozawa equation, and thermal safety software (TSS) series via DSC experimental data. Liquid thermal explosion (LTE) by TSS was employed to simulate the thermal explosion development for various types of storage tank. In view of loss prevention, calorimetric application and model analysis to integrate thermal hazard development were necessary and useful for inherently safer design.  相似文献   

5.
Dibenzoyl peroxide (BPO) has been widely employed in the petrifaction industry. This study determined the unsafe characteristics of organic peroxide mixed with incompatible materials so as to help prevent runaway reactions, fires or explosions in the process environment. Thermal activity monitor III (TAM III) was applied to assess the kinetic parameters, such as kinetic model, reaction order, heat of reaction (ΔH d), activation energy (E a), and pre-exponential factor (k 0), etc. Meanwhile, TAM III was used to analyze the thermokinetic parameters and safety indices of BPO and contaminated with sulfuric acid (H2SO4) and sodium hydroxide (NaOH). Simulations of a 0.5 L Dewar vessel and 25 kg commercial package in green thermal analysis technology were performed and compared to the thermal stability. From these, the optimal conditions were determined to avoid violent reactions in incompatible materials that cause runaway reactions in storage, transportation, and manufacturing.  相似文献   

6.
Organic peroxides (OPs) have caused many momentous explosions and runaway reactions, resulting from thermal instability, chemical pollutants, and even mechanical shock. In Taiwan, dicumyl peroxide (DCPO), due to its unstable reactive nature, has caused two thermal explosions and runaway reaction incidents in the manufacturing process. To evaluate thermal hazards of DCPO in a batch reactor, we studied thermokinetic parameters, such as heat of decomposition (†H d), exothermic onset temperature (T 0), maximum temperature rise ((dT/dt)max), maximum pressure rise ((dP/dt)max), self-heating rate (dT/dt), etc., via differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2).  相似文献   

7.
The kinetics of the heat release during the reactions of aqueous HNO3 withn-heptane andn-octadecane was studied. The kinetic regularities of the reactions of hydrocarbons C7H16−C18H38 with HNO3 and the heats of the reactions were described. At all stages, except initial, the hydrocarbon reacts with NO2 and nitric acid reproduces NO2 in the reaction with NO. The accumulation of NO2 results in the acceleration of the process. When the pressure of the hydrocarbon vapor is equilibrium, its reaction with NO2 can also proceed in the gas phase. The contribution of this reaction to the total heat release was estimated. The additives of aromatic and unsaturated hydrocarbons to aliphatic hydrocarbons increase strongly the initial rate of the heat release and changes slightly the subsequent stages of the process. Naphthenic hydrocarbons have almost no effect on the kinetic parameters of the process. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 35–40, January, 1998.  相似文献   

8.
Methyl ethyl ketone peroxide (MEKPO) possesses complex structures which have caused many incidents involving fires or explosions by mixing with incompatible substances, external fires, and others. In this study, reactivities or incompatibilities of MEKPO with inorganic acids (HCl, HNO3, H3PO4 and H2SO4) were assessed by differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2). Parameters obtained by the above-mentioned devices could be readily employed to discuss the runaway reaction, such as onset temperature (T 0), heat of reaction (ΔH d), time to maximum rate (TMR), maximum self heat rate (dT/dt)max, adiabatic temperature rise (ΔT ad), maximum pressure of decomposition (P max) and so on. Mixing MEKPO with hydrochloric acid resulted in the lowest T 0 among inorganic acids. Nitric acid not only lowered the T 0 but also delivered the highest heat releasing rate or self heat rate (dT/dt), which was concluded to be the worst case in terms of contamination hazards during storage or transportation of MEKPO.  相似文献   

9.
The extraction of uranium(VI) from nitric acid medium is investigated using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A in dimeric form, H2A2) as extractant either alone or in combination with neutral extractants such as tri-n-butyl phosphate (TBP), trioctyl phosphine oxide (TOPO), and dioctyl sulfoxide (DOSO). The effects of different experimental parameters such as aqueous phase acidity (up to 10 M HNO3), nature of diluent [xylene, carbon tetrachloride (CCl4), n-dodecane and methyl iso-butyl ketone (MIBK)] and of temperature (303–333 K) on the extraction behavior of uranium were investigated. Synergistic extraction of uranium was observed between 0.5 and 6 M HNO3. Use of MIBK as diluent was also studied. Temperature variation studies using PC88A as extractant showed exothermic nature of extraction process. Studies were carried out to optimize the conditions for the recovery of uranium from the raffinate generated during the purification of uranium from nitric acid medium. Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES) and Energy Dispersive X-Ray Fluorescence (EDXRF) techniques were employed for analysis of uranium in equilibrated samples.  相似文献   

10.
Many thermal runaway incidents have been caused by organic peroxides due to the peroxy group, -O-O-, which is essentially unstable and active. Lauroyl peroxide (LPO) is also sensitive to thermal sources and is incompatible with many materials, such as acids, bases, metals, and ions. From the thermal decomposition reaction of various concentrations of nitric acid (HNO3) (from lower to higher concentrations) with LPO, experimental data were obtained as to its exothermic onset temperature (T0), heat of decomposition (ΔHd), isothermal time to maximum rate (TMRiso), and other safety parameters exclusively for loss prevention of runaway reactions and thermal explosions. As a novel finding, LPO mixed with HNO3 can produce the detonation product of 1-nitrododecane. We used differential scanning calorimetry (DSC), thermal activity monitor III (TAM III), and gas chromatography/mass spectrometer (GC/MS) analyses of the reactivity for LPO and itself mixed with HNO3 to corroborate the decomposition reactions and reaction mechanisms in these investigations.  相似文献   

11.
The oxidation of N,N-dimethylhydroxylamine (DMHAN) by nitrous acid is investigated in perchloric acid and nitric acid medium, respectively. The effects of H+, DMHAN, ionic strength and temperature on the reaction are studied. The rate equation in perchloric acid medium has been determined to be −d[HNO2]/dt = k[DMHAN][HNO2], where k = 12.8 ± 1.0 (mol/L)−1 min−1 when the temperature is 18.5 °C and the ionic strength is 0.73 mol/L with an activation energy about 41.5 kJ mol−1. The reaction becomes complicated when it is performed in nitric acid medium. When the molarity of HNO3 is higher than 1.0 mol/L, nitrous acid will be produced via the reaction between nitric acid and DMHAN. The reaction products are analyzed and the reaction mechanism is discussed in this paper.  相似文献   

12.
Uranium from different uranium oxide matrices was extracted with tri-n-butyl phosphate–nitric acid (TBP–HNO3) adduct using supercritical carbon dioxide (SC CO2). While 30 min dissolution time at 323 K was sufficient for U3O8 and UO2 powder, UO2 granule (at 333 K) and crushed green pellet (at 353 K) required 40 min. Crushed sintered pellet required 60 min at 353 K for complete dissolution. Influence of various experimental parameters such as temperature, pressure, volume of TBP–HNO3 adduct, acidity of nitric acid used for preparing TBP–HNO3 adduct and extraction time on uranium extraction efficiency was also investigated. For UO2 powder, temperature of 323 K, pressure of 15.2 MPa, 1 mL TBP–HNO3 adduct, 10 M nitric acid and 30 min extraction time was found to be optimum. ~70% uranium extraction efficiency was obtained on extraction with SC CO2 alone which increased to 90% with the addition of 2.5% TBP in SC CO2 stream. Extraction efficiency was found to vary linearly with TBP percentage and nearly complete uranium extraction (~99%) was observed with 20% TBP. Nearly complete extraction was also achieved with addition of 2.5% thenoyltrifluoroacetylacetone (TTA) in methanol. The optimized procedure was extended to remove uranium from simulated tissue paper waste matrix smeared with uranium oxide solids.  相似文献   

13.
The influence of preliminary γ-irradiation and γ-irradiation during hte oxidation process on the kinetics of heat release in the systemsn-decane—aqueous solution of HNO3 and a solution of tributyl phosphate in a kerosene—aqueous solution of HNO3 was studied. The preliminary γ-irradiation of the system at 43°C increases the initial rate of the process (k 1). The increase is proportional to the irradiation dose at doses up to 150kGy, then the increase ink 1 is retarded, and the further course of the process becomes practically independent of the irradiation dose. The effect of γ-irradiation during the oxidation depends on the temperature of the system: at temperatures lower than 80 °C, γ-irradiation increases the rate of heat release, whereas at higher temperatures, γ-irradiation decreases the rate of heat release. The effects observed were explained by the competition of NO2 accumulation due to the radiolysis of nitric acid and processes of the addition of NO2 to unsaturated hydrocarbons produced by the radiolysis of the organic phase. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 6, pp. 1116–1120, June, 1998.  相似文献   

14.
The kinetics of oxidation-reduction reaction between N,N-diethylhydroxylamine (DEHAN) and nitrous acid in nitric acid solution have been studied by spectrophotometry at 9.5°C. The rate equation is −d[HNO2]/dt=K[HNO2]·[DEHAN][HNO3] and the rate constantK=12.81 (mol/l)−2·min−1. A possible mechanism has been suggested on the basis of chemical analysis and Raman spectra. The activation energyE and the thermodynamic functions ΔH #, ΔG # and ΔS # are also calculated.  相似文献   

15.
A multi-functional separation process is proposed as one of the technologies for implementing the Adv.-ORIENT (Advanced Optimization by Recycling Instructive ElemeNTs) Cycle concept [1]. The tertiary pyridine-type anion exchange resin (TPR) embedded in silica beads (silica-supported TPR) was demonstrated suitable for the separation process of actinides from spent fuel. In this process, hydrochloric acid (HCl) and a mixture of nitric acid (HNO3) and methanol (MeOH) are used as eluents. In order to apply this process to an engineering plant scale, two important issues must be evaluated to prove the system suitability. One is an environmental aspect represented by the use of HCl solution which is corrosive to many materials. The other is clarification of the reactive safety of silica-supported TPR and the HNO3–MeOH solvent mixture. Four types of metals, Ta, Zr, Nb, and Hastelloy-B (28%Mo–Ni) were selected as candidate materials which are anti-corrosive toward HCl. Corrosion experiments were conducted in HCl type simulated high level liquid waste (SHLLW) solution at room temperature for a maximum 720 h and at 90 °C for 336 h. Ta showed an all-round anti-corrosion property in HCl type SHLLW solution, and Hastelloy-B was only acceptable at room temperature. Thermal analysis by differential scanning calorimetry was done to investigate the thermal stability of silica-supported TPR-NO3/MeOH/HNO3 mixtures. Heating experiment results on a gram scale were also obtained and evaluated to determine the conditions necessary to avoid runaway reactions. As a result, it was confirmed that a vigorous exothermic reaction can be avoided by controlled decrease of temperature.  相似文献   

16.
The dissolution of zinc in 0.48–1.49M HNO3 was studied at 15–25°C, by following simultaneously the concentration changes of the reactants (Zn and HNO3), intermediate (HNO2) and product (Zn2+) with time. Explicit mechanisms were suggested for the dissolution of zinc in nitric acid. The kinetics of the dissolution process show that it is of the first-order with respect to [Zn] and [HNO2]. The data obtained show that the dissolution process is diffusion-controlled. The mechanism of zinc dissolution is compared with the mechanism of copper dissolution.
Die Kinetik der Auflösung von Zink in Salpetersäure
Zusammenfassung Die Auflösung von Zink in 0.48–1.49M HNO3 wurde bei 15–25°C mittels gleichzeitiger Verfolgung der Konzentrationsänderungen der Reaktanden (Zn und HNO3), des intermediären HNO2 und des Produkts Zn2+ untersucht. Es wird ein Mechanismus vorgeschlagen. Die Kinetik der Auflösung ist erster Ordnung bezüglich [Zn] und [HNO2]. Die Daten zeigen, daß der Auflösungsvorgang diffusionskontrolliert ist. Der Mechanismus der Auflösung von Zink wird mit dem der Kupferauflösung verglichen.
  相似文献   

17.
Solvent extraction of U(VI) with di-isodecyl phosphoric acid (DIDPA)/dodecane from nitric acid medium has been investigated for a wide range of experimental conditions. Effect of various parameters including nitric acid concentration, DIDPA concentration, temperature, stripping agents, and other impurities like rear earths, transition metal ion, boron, aluminum ion on U(VI) extraction has been studied. The species extracted in the organic phase is found to be UO2(NO3)(HA2)·H2A2 at lower acidity (<3.0 M HNO3). Increase in temperature lead to the decrease in extraction with the enthalpy change by ∆H = −16.27 kJ/mol. Enhancement in extraction of U(VI) from nitric acid medium was observed with the mixture of DIDPA and tri butyl phosphate (TBP). The stripping of U(VI) from organic phase (DIDPA–U(VI)/dodecane) with various reagents followed the order: 4 M H2SO4 > 5% (NH4)2CO3 > 8 M HCl > 8 M HNO3 > Water. High separation factors between U(VI) and impurities suggested that the use of DIDPA for purification of uranium from multi elements bearing solution.  相似文献   

18.
Cumene hydroperoxide (CHP) being catalyzed by acid is one of the crucial processes for producing phenol and acetone globally. However, it is thermally unstable to the runaway reaction readily. In this study, various concentrations of phenol and acetone were added into CHP for determination of thermal hazards. Differential scanning calorimetry (DSC) tests were used to obtain the parameters of exothermic behaviors under dynamic screening. The parameters included exothermic onset temperature (T 0), heat of decomposition (ΔH d), and exothermic peak temperature (T p). Vent sizing package 2 (VSP2) was employed to receive the maximum pressure (P max), the maximum temperature (T max), the self-heating rate (dT/dt), maximum pressure rise rate ((dP/dt)max), and adiabatic time to maximum rate ((TMR)ad) under the worst case. Finally, a procedure for predicting thermal hazard data was developed. The results revealed that phenol and acetone sharply caused a exothermic reaction of CHP. As a result, phenol and acetone are important indicators that may cause a thermal hazard in the manufacturing process.  相似文献   

19.
Thermochemical interaction of TBP with nitric acid in single-phase organic systems has been studied at the concentrations of HNO3 1.4 to 5.6M, in temperature range of 110–140 °C. The termochemical oxidation of TBP includes a number of consecutive and concurrent reactions, such as acid hydrolysis, the oxidation of the TBP hydrolysis products, and TBP destructive oxidation. Some of these reactions can proceed with heat explosion. The limiting temperature (120–130 °C) and acid concentration (2.5 mol/l) at which the oxidation reactions are able to transform to heat explosion have been estimated. The rate constants and activation energies were determined for the reactions presenting a potential hazard.  相似文献   

20.
With two active O?CO peroxide groups, 1,1-bis(tert-butylperoxy)cyclohexane (BTBPC) has a certain degree of thermal instability. It is usually used as an initiator in chemical processes, and therefore reckless operation may result in serious thermal accidents. This study focused on the runaway reactions of BTBPC alone and mixed with various concentrations of nitric acid (1, 2, 4, and 8?N). The essential thermokinetic parameters, such as exothermic onset temperature (T o), activation energy (E a), frequency factor (A), time to maximum rate under adiabatic condition (TMRad) and time to conversion limit (TCL), were evaluated by differential scanning calorimetry at the heating rate of 4?°C min?1, and a kinetics-based curve fitting method was used to assess the thermokinetic parameters. All the results indicated that BTBPC mixed with one more than 4?N nitric acid dramatically increased the degree of thermal hazard in the exothermic peak and became more dangerous. However, it was relatively safe for BTBPC mixed with less than 1?N nitric acid under 34.5?°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号