首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of electron-phonon interactions in a dielectric on the emission current and the transfer ratioα is investigated. A simple model of a thin-film field cathode, based on the tunnel effect between the first metal and the dielectric, has been proposed for this purpose. In the dielectric the tunnelling electrons can lose energy by collisions with phonons and flaws, and in the top electrode by collisions with electrons of metal 2. After some simplifications the transfer ratio α is obtained. The expressions forα are then discussed and compared with other models. It is shown that if the appropriate parameters are chosen for the cathode, the effect of the phonons will be negligible.  相似文献   

2.
The propagation of high power helicon in n-InSb has been analysed taking into account the heating of the carriers by the electric field of the wave. The momentum and energy transfer of the electrons have been taken to be due to acoustic phonons and polar optical phonons scattering at 77°K respectively. The sample is assumed to be finite and the wave is incident on the semiconductor-free space interface. Calculations have been made for phase constant, attenuation constant, reflection coefficient and the electron temperature as function of the magnetic field and the wave amplitude. The theoretical results are found to be in qualitative agreement with the experimental observations of Laurinavichyus and Pozhela[14].  相似文献   

3.
The nonequilibrium transfer of the energy between electrons of counter-propagating quasi-one-dimensional systems has been perturbatively calculated for edge channels in a two-dimensional system in the integer quantum Hall effect. The processes involving two electrons that are allowed only in the system with disorder have been taken into account. Expressions for the cases of Coulomb scattering and transfer of nonequilibrium phonons have been obtained. The energy transferred per unit time has a quasi-threshold dependence on the degree of nonequilibrium of the hot channel. According to numerical estimates for electrons in GaAs, Coulomb scattering processes dominate in the energy transfer and the expected effect can be experimentally observed.  相似文献   

4.
On the basis of the existing theory of ultrasonic attenuation, a model Hamiltonian is derived which has to replace the Fröhlich Hamiltonian, at least in an impure metal. Whilst the imaginary part of the phonon self-energy is easily connected with the ultrasonic attenuation constant, the same quantity of the electrons allows no conclusion on inelastic collisions in this case. Therefore, from the linear response function, a kinetic equation for the electrons is derived. It is found that the time between inelastic collisions with phonons increases if impurities are added to the metal.  相似文献   

5.
Effects of electron-phonon interaction on the interaction between electrons in semiconductor quantum wells are considered. It is found that the direct Coulomb potential between electrons in a quantum well is smaller than that in bulk semicondutors. The antisymmetric modes of the confined bulk phonons and interface phonons have no contribution to the effective interaction of electrons. If a well is narrow enough, the effective interaction between electrons caused by interaction with interface phonons may exceed that by interaction with confined bulk phonons. In narrower wells the effective interaction potential of electrons produced by phonons is stronger, but decreases rapidly with increasing distance between electrons.  相似文献   

6.
杨福军  班士良 《物理学报》2012,61(8):87201-087201
对含有AlN插入层纤锌矿AlxGa1-xN/AlN/GaN异质结构,考虑有限厚势垒和导带弯曲的实际 异质结势,同时计入自发极化和压电极化效应产生的内建电场作用,采用数值自洽求解薛定谔方程和泊松方程, 获得二维电子气(2DEG)中电子的本征态和本征能级.依据介电连续模型和Loudon单轴晶体模型, 用转移矩阵法分析该体系中可能存在的光学声子模及三元混晶效应.进一步, 在室温下计及各种可能存在的光学声子散射,推广雷-丁平衡方程方法,讨论2DEG分布及二维电子迁移率的 尺寸效应和三元混晶效应.结果显示: AlN插入层厚度和AlxGa1-xN势垒层中Al组分的增加均会 增强GaN层中的内建电场强度,致使2DEG的分布更靠近异质结界面,使界面光学声子强于其他类型的 光学声子对电子的散射作用而成为影响电子迁移率的主导因素.适当调整AlN插入层的厚度和Al组分, 可获得较高的电子迁移率.  相似文献   

7.
Different models for relaxation dynamics of electrons and phonons in a thin metal film heated by femto-pico second laser pulses have been discussed. The traditional two-temperature approach reveals to be inaccurate due to deviations of electrons and phonons from Fermi-Dirac and Bose-Einstein distributions, respectively. Coupled Boltzmann kinetic equations have been adapted for the quantum statistics to study the energy distribution of electrons and phonons in metals. Theoretical details have been discussed and a new solution method has been proposed overcoming numerical problems and improving stability, allowing the study of the dynamics until the complete relaxation. Numerical results have been compared with photoemission spectroscopy experimental data.  相似文献   

8.
The role of the peripheral and non-peripheral phonons in the estimation of the lattice thermal conductivity of a metal has been studied at low temperatures by calculating their separate contributions towards the total lattice thermal conductivity. The study is made in the temperature range 0.4–2.5 K with the help of the Ziman expression for the scattering of phonons by the charge carriers and the Callaway expression of the phonon conductivity, and Sb is taken as an example. The separate percentage contributions due to peripheral and non-peripheral phonons have also been studied and it is found that the percentage contribution due to peripheral phonons increases with increasing temperature while the percentage contribution due to non-peripheral phonons decreases with increasing temperature. The percentage contributions of the lattice thermal resistivities due to electrons and holes towards the total lattice thermal resistivity of Sb have also been reported in the present note.  相似文献   

9.
The electrons and phonons in metal films after ultra-short pulse laser heating are in highly non-equilibrium states not only between the electrons and the phonons but also within the electrons. An electrohydrodynamics model consisting of the balance equations of electron density, energy density of electrons, and energy density of phonons is derived from the coupled non-equilibrium electron and phonon Boltzmann transport equations to study the nonlinear thermal transport by considering the electron density fluctuation and the transient electric current in metal films, after ultra-short pulse laser heating. The temperature evolution is calculated by the coupled electron and phonon Boltzmann transport equations, the electrohydrodynamics model derived in this work, and the two-temperature model. Different laser pulse durations, film thicknesses, and laser fluences are considered. We find that the two-temperature model overestimates the electron temperature at the front surface of the film and underestimates the damage threshold when the nonlinear thermal transport of electrons is important. The electrohydrodynamics model proposed in this work could be a more accurate prediction tool to study the non-equilibrium electron and phonon transport process than the two-temperature model and it is much easier to be solved than the Boltzmann transport equations.  相似文献   

10.
固态金属中声子热传递的分子动力学模拟研究   总被引:2,自引:0,他引:2  
固态金属中的热传递是声子和自由电子共同作用的结果。自由电子引起的热导率可以通过电导率,利用Wiedemann-Franz定律得到,声子引起的热导率目前仍然不能进行实验测量,只能借助其他方法来研究。本文采用非平衡分子动力学(NEMD)方法,用镶嵌原子方法(EAM)势能模型,模拟计算了不同厚度(1.760-10.56nm)金属镍薄膜中由于声子-声子作用引起的热导率。然后根据纳米厚度金属薄膜的热导率借助关联式推到宏观尺度下由于声子-声子作用引起的热导率。结果表明,对于纳米厚度金属薄膜,由于声子-声子作用引起的热导率比块体金属镍的热导率小一个数量级;薄膜厚度越小,声子-声子作用引起的热导率越小;对于块体金属镍,由于声子-声子作用引起的热导率约占其总热导率的33.0%左右。  相似文献   

11.
The theory of sound generation and heat transfer in matrix-embedded metal nanoparticles under ultra-short laser irradiation has been developed. The shape and time dependence of acoustic waves generated by a sharp change in the pressure of electrons have been investigated for a single nanoparticle and for the group of nanoparticles located on a 2-D flat matrix plane. The dependence of the electronic temperature and the temperature of the interface between the dielectric matrix and nanoparticle as a function of time has been derived.  相似文献   

12.
Cooling methods are needed for turbine blade tips to ensure a long durability and safe operation. A common way to cool a tip is to use serpentine passages with 180-deg turn under the blade tip-cap taking advantage of the three-dimensional turning effect and impingement like flow. Improved internal convective cooling is therefore required to increase the blade tip lifetime. In the present study, augmented heat transfer of an internal blade tip with pin-fin arrays has been investigated numerically using a conjugate heat transfer method. The computational domain includes the fluid region and the solid pins as well as the tip regions. Turbulent convective heat transfer between the fluid and pins, and heat conduction within pins and tip are simultaneously computed. The main objective of the present study is to observe the effect of the pin material on heat transfer enhancement of the pin-finned tips. It is found that due to the combination of turning, impingement and pin-fin crossflow, the heat transfer coefficient of a pin-finned tip is a factor of 2.9 higher than that of a smooth tip at the cost of an increased pressure drop by less than 10%. The usage of metal pins can reduce the tip temperature effectively and thereby remove the heat load from the tip. Also, it is found that the tip heat transfer is enhanced even by using insulating pins having low thermal conductivity at low Reynolds numbers. The comparisons of overall performances are also included.  相似文献   

13.
A.M. Chen 《Optics Communications》2011,284(8):2192-2197
A numerical solution of the two-temperature model has been performed up to the shaped femtosecond pulse sequences heated metal target. The two-temperature model is used to analyze the shaped femtosecond pulse sequences with the following major conclusions. We confirm the distinctly different results on the different shaped femtosecond pulse sequences. As the number of shaped femtosecond pulses increases, the nonequilibrium state between electrons and phonons gradually disappears, the highest transient electron temperature is lowered and the thermolization time is prolonged, the electron heat conductivity remains higher because of the effect of incubation on the electron temperature, which preserves the advantages of ultrashort lasers. The shaped femtosecond pulse sequences can increase the efficiency in ablation and micromachining.  相似文献   

14.
We review our recent results obtained on an AlN/GaN-based high-electron-mobility transistor. The temperature of the electrons drifting under a relatively-high electric field is significantly higher than the lattice temperature (i.e., the hot electrons are generated). These hot electrons are produced through the Fröhlich interaction between the drifting electrons and long-lived longitudinal-optical phonons. By fitting electric field vs. electron temperature deduced from the measurements of photoluminescence spectra to a theoretical model, we have deduced the longitudinal-optical-phonon emission time for each electron is to be on the order of 100 fs. We have also measured the decay time constant for LO phonons to be about 4.2 ps. An electric field present in a GaN/AlN heterostructure can bring both the first-order and second-order Raman scattering processes into strong resonances. The resonant Stokes and anti-Stokes Raman scattering results in the increase and decrease of non-equilibrium longitudinal-optical phonon temperatures, respectively. Moreover, the phonon temperature measured from the Raman scattering is increased with an applied electric field at a much higher rate than the lattice temperature due to the presence of field-induced non-equilibrium longitudinal-optical phonons.  相似文献   

15.
A cascaded lattice Boltzmann (CLB) model is constructed for simulating heat transfer in metal-foam-based solid-liquid phase change materials (PCMs). The present model captures the phase interface implicitly via the enthalpy methodology, and to avoid iterations in simulations, the CLB equation of the PCM employs the enthalpy as the basic evolution variable through modifying the cascaded collision process. Numerical results demonstrate the effectiveness and practicability of the CLB model for investigating heat transfer in solid-liquid PCMs with metal foams. The effects of the inertial coefficient, permeability and porosity on the melting process are investigated. The results indicate that the empirical correlations of inertial coefficient and permeability based on packed beds overestimate the melting rate at high porosities. Moreover, the porosity has significant impact on phase-change processes. The melting rate increases as the porosity of the metal foam decreases since heat conduction through high thermal conductive metal foam dominates the total heat transfer.  相似文献   

16.
Navinder Singh 《Pramana》2004,63(5):1083-1087
The energy relaxation between the hot degenerate electrons of a homogeneously photoexcited metal film and the surface phonons (phonon wave vectors in two dimensions) is considered under Debye approximation. The state of electrons and phonons is described by equilibrium Fermi and Bose functions with different temperatures. Two cases for electron scattering by the metal surface, namely specular and diffuse scattering, are considered.  相似文献   

17.
Current and heat transfer through the interface between a two-band superconductor and a normal metal has been theoretically considered taking into account the interband scattering at the interface. Cases of various symmetries of the order parameter of the two-band superconductor such as s ++ and s ± have been analyzed. The bolometric applications of the contacts of two-band superconductors with a normal metal have been discussed.  相似文献   

18.
Experimentally derived emission characteristics — the transfer ratio, angular distribution, energy distributionsN(E) andN(E x ) and energy-angular distribution of emitted electrons — are discussed on the basis of our theoretical model of the sandwich cathode. It was found that electrons during their transfer through the cathode are scattered in the dielectric layer mostly by interactions with optical phonons and traps and in the top metal electrode by collisions with conduction electrons. Comparison of our model with experimental results gave us approximate values of mean free paths and further cathode parameters.  相似文献   

19.
Dissipation of chemical energy released in exothermic reactions at metal surfaces may happen adiabatically by creation of phonons or non-adiabatically by excitation of the electronic system of the metal or the reactants. In the past decades, the only direct experimental evidence for such non-adiabatic reactions has been exoelectron emission into vacuum and surface chemiluminescence which are observed in a special class of very exothermic reactions. The creation of e–h pairs in the metal has been discussed in many theoretical models but it was only recently that a novel experimental approach using Schottky diodes with ultrathin metal films makes direct measurement of reaction-induced hot electrons and holes possible. The chemical reaction creates hot charge carriers which travel ballistically from the metal film surface toward the Schottky interface and are detected as a chemicurrent in the diode. By now, such currents have been observed during adsorption of atomic hydrogen and deuterium on Ag, Cu and Fe surfaces as well as chemisorption of atomic and molecular oxygen, of NO and NO2 molecules and of certain hydrocarbons on Ag. This paper reviews briefly exoelectron and chemiluminescence experiments and the concept of the Nørskov–Newns–Lundqvist model. The major part is devoted to the detection of chemically induced e–h pairs with thin metal film Si Schottky diodes by discussing the different influences on the chemicurrent magnitude and presenting experimental results predominantly with hydrogen and deuterium atoms. The experiments introduce a new method to investigate surface reaction kinetics and dynamics by use of an electronic device. In addition, the diodes may be used as selective reactive gas sensors.  相似文献   

20.
Characteristics of gas-phase ignition of grinded brown coal (brand 2B, Shive-Ovoos deposit in Mongolia) layer by single and several metal particles heated to a high temperature (above 1000 K) have been investigated numerically. The developed mathematical model of the process takes into account the heating and thermal decomposition of coal at the expense of the heat supplied from local heat sources, release of volatiles, formation and heating of gas mixture and its ignition. The conditions of the joint effect of several hot particles on the main characteristic of the process–ignition delay time are determined. The relation of the ignition zone position in the vicinity of local heat sources and the intensity of combustible gas mixture warming has been elucidated. It has been found that when the distance between neighboring particles exceeds 1.5 hot particle size, an analysis of characteristics and regularities of coal ignition by several local heat sources can be carried out within the framework of the model of “single metal particle / grinded coal / air”. Besides, it has been shown with the use of this model that the increase in the hot particle height leads, along with the ignition delay time reduction, to a reduction of the source initial temperatures required for solid fuel ignition. At an imperfect thermal contact at the interface hot particle / grinded coal due to the natural porosity of the solid fuel structure, the intensity of ignition reduces due to a less significant effect of radiation in the area of pores on the heat transfer conditions compared to heat transfer by conduction in the near-surface coal layer without regard to its heterogeneous structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号