首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
On the basis of extensive first-principle calculations within the framework of quantum mechanics/molecular mechanics (QM/MM), a conclusive mechanism for the formation of the signaling state of blue light using flavin (BLUF) domain proteins is proposed which is compatible with the experimental data presently available. Time-dependent density functional, as well as advanced coupled cluster response theory was employed for the QM part in order to describe the relevant excited states. One of the key residues involved in the mechanism is the glutamine adjacent to the flavin chromophore. The reaction cascade, triggered by the initial photoexcitation of the flavin chromophore, involves isomerization of this residue but no rotation as assumed previously. The fact that only the environment, but not the flavin chromophore by itself, is chemically transformed along the individual steps of the mechanism is unique for biological photoreceptors. The final isomer of the glutamine tautomer, i.e., the imidic acid, is further stabilized by the interchange of a methionine residue in the binding pocket with a tryptophan residue. The flip of these two residues might be the trigger for the large conformational change of this protein which is consequently transmitted as the signal to the biological environment.  相似文献   

2.
Photoinduced electron transfer from tyrosine to the flavin chromophore is involved in activation of BLUF (sensor of blue light using FAD) photoreceptors. We studied the electron transfer (ET) coupled with proton-transfer (PT) reactions, by means of XMCQDPT2//CASSCF calculations on a molecular cluster model. By defining a minimum active space in the CASSCF calculations, we could compute the entire photoreaction pathway. We find that the crossing of the locally excited and ET states is located along the flavin bond-stretching coordinate. The ET state is stabilized by a proton transfer from the electron donor to the electron acceptor. We mapped two different PT pathways from tyrosine to flavin via the conserved glutamine. These reactions generate a tautomeric form of glutamine. Along the PT coordinates, we find geometries where the ET and the electronic ground states degenerate. At the state crossing structures, either formation of the ground state biradical intermediate or a relaxation back to the Franck-Condon minimum takes places. The computed relaxation pathways reveal that the hydrogen bonds involving glutamine in the chromophore-binding pocket control BLUF photoefficiency.  相似文献   

3.
The flavin-adenine-dinucleotide-binding BLUF domain constitutes a new class of blue-light receptors, and the N-terminal domain of AppA is a representative of this family. A crystal structure of the BLUF domain from AppA suggested that a conserved Gln63 forms a hydrogen bond with the flavin N5 atom. Upon light excitation, this residue is proposed to undergo a approximately 180 degrees rotation that leads to a rearrangement of a hydrogen bonding network. However, crystallographic studies on the other BLUF proteins claimed an opposite orientation for the glutamine residue. In this communication, we have revealed the presence of a Gln63-to-N5 hydrogen bond in the dark state of AppA by a combined approach of mutagenesis, spectroscopy, and quantum chemical calculations. The present finding supports the view that the reorientation of the Gln63 side chain is a key event in the signaling state formation of BLUF proteins.  相似文献   

4.
The AppA BLUF domain is a blue light photoreceptor containing flavin. Conserved glutamine 63 is necessary for the photocycle of the protein, and its side chain has been proposed to flip in response to blue light illumination. Recently published crystal structures of AppA WT and the AppA mutant C20S describe contradictory conclusions regarding the orientation of the conserved glutamine 63 side chain in the dark. Here, we present evidence from NMR spectroscopy confirming light-induced flipping of the glutamine side chain to form a strong hydrogen bond between the glutamine 63 side chain carbonyl group and the tyrosine 21 side chain hydroxyl proton in the light-induced state. Our conclusions are consistent with published data from UV/vis absorbance and FTIR spectroscopy, as well as the crystal structure of AppA WT.  相似文献   

5.
Blue-light sensitive photoreceptory BLUF domains are flavoproteins, which regulate various, mostly stress-related processes in bacteria and eukaryotes. The photoreactivity of the flavin adenine dinucleotide (FAD) cofactor in three BLUF domains from Rhodobacter sphaeroides, Synechocystis sp. PCC 6803 and Escherichia coli have been studied at low temperature using time-resolved electron paramagnetic resonance. Photoinduced flavin triplet states and radical-pair species have been detected on a microsecond time scale. Differences in the electronic structures of the FAD cofactors as reflected by altered zero-field splitting parameters of the triplet states could be correlated with changes in the amino-acid composition of the various BLUF domains' cofactor binding pockets. For the generation of the light-induced, spin-correlated radical-pair species in the BLUF domain from Synechocystis sp. PCC 6803, a tyrosine residue near the flavin's isoalloxazine moiety plays a critical role.  相似文献   

6.
Blue light sensing using flavin (BLUF) protein photoreceptor domains change their hydrogen bond network after photoexcitation. To explore this phenomenon, BLUF domains from R. sphaeroides were simulated using Amber99 molecular dynamics (MD). Five starting configurations were considered, to study different BLUF proteins (AppA/BlrB), Trp conformations (“Win”/“Wout”), structure determination (X‐ray/NMR), and finally, His protonation states. We found dependencies of the hydrogen bonds on almost all parameters. Our data show an especially strong correlation of the Trp position and hydrogen bonds involving Gln63. The latter is in some contradiction to earlier results (Obanayama et al., Photochem. Photobiol. 2008, 84 10031010). Possible origins and implications are discussed. Our calculations support conjectures that Gln63 is more flexible with Trp104 in Win position. Using snapshots from MD and time‐dependent density functional theory, UV/vis spectra for the chromophore were determined, which account for molecular motion of the protein under ambient conditions. In accord with experiment, it is found that the UV/vis spectra of BLUF bound flavin are red‐shifted and thermally broadened for all calculated π → π* transitions, relative to gas phase flavin at T = 0 K. However, differences in the spectra between the various BLUF configurations cannot be resolved with the present approach. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
The photophysics of roseoflavin in three different environments is investigated by using ab initio and quantum mechanics/molecular mechanics methods. Intramolecular charge transfer is shown to be responsible for the quenching of the fluorescence in the gas phase, and in the water environment. However, for the roseoflavin incorporated into the blue light using flavin (BLUF) protein environment (substituting the native flavin) no such deactivation is found. The conical intersection between the locally excited state of the chromophore and the charge transfer state involving the tyrosine residue, which in the native BLUF domain is responsible for initiating the photocycle, is missing for the roseoflavin substituted protein. This explains the experimental observations of the lack of any photocycle, and the loss of the biological function of the BLUF photoreceptor reported earlier.  相似文献   

8.
The AppA protein with the BLUF (blue light using flavin adenine dinucleotide) domain is a blue light photoreceptor that cycle between dark-adapted and light-induced functional states. We characterized possible reaction intermediates in the photocycle of AppA BLUF. Molecular dynamics (MD), quantum chemical and quantum mechanical-molecular mechanical (QM/MM) calculations were carried out to describe several stable structures of a molecular system modeling the protein. The coordinates of heavy atoms from the crystal structure (PDB code 2IYG) of the protein in the dark state served as starting point for 10 ns MD simulations. Representative MD frames were used in QM(B3LYP/cc-pVDZ)/MM(AMBER) calculations to locate minimum energy configurations of the model system. Vertical electronic excitation energies were estimated for the molecular clusters comprising the quantum subsystems of the QM/MM optimized structures using the SOS-CIS(D) quantum chemistry method. Computational results support the occurrence of photoreaction intermediates that are characterized by spectral absorption bands between those of the dark and light states. They agree with crystal structures of reaction intermediates (PDB code 2IYI) observed in the AppA BLUF domain. Transformations of the Gln63 side chain stimulated by photo-excitation and performed with the assistance of the chromophore and the Met106 side chain are responsible for these intermediates.  相似文献   

9.
The BLUF (blue light sensor using flavin adenine dinucleotide) domain is widely studied as a prototype for proton coupled electron transfer (PCET) reactions in biological systems. In this work, the photo-induced concerted PCET reaction from the light state of the AppA BLUF domain is investigated. To model the simultaneous transfer of two protons in the reaction, two-dimensional potential energy surfaces for the double proton transfer are first calculated for the locally excited and charge transfer states, which are then used to obtain the vibrational wave function overlaps and the vibrational energy levels. Contributions to the PCET rate constant from each pair of vibronic states are then analyzed using the theory based on the Fermi's golden rule. We show that, the recently proposed light state structure of the BLUF domain with a tautomerized Gln63 residue is consistent with the concerted transfer of one electron and two protons. It is also found that, thermal fluctuations of the protein structure, especially the proton donor-acceptor distances, play an important role in determining the PCET reaction rate. © 2018 Wiley Periodicals, Inc.  相似文献   

10.
The BLUF protein BlrB from the non-sulphur anoxyphototrophic purple bacterium Rhodobacter sphaeroides is characterized by absorption and emission spectroscopy. BlrB expressed from E. coli binding FAD, FMN, and riboflavin (called BrlB(I)) and recombinant BlrB containing only FAD (called BlrB(II)) are investigated. The dark-adapted proteins exist in two different receptor conformations (receptor states) with different sub-nanosecond fluorescence lifetimes (BLUF(r,f) and BLUF(r,sl)). Some of the flavin-cofactor (ca. 8%) is unbound in thermodynamic equilibrium with the bound cofactor. The two receptor conformations are transformed to putative signalling states (BLUF(s,f) and BLUF(s,sl)) of decreased fluorescence efficiency and shortened fluorescence lifetime by blue-light excitation. In the dark at room temperature both signalling states recover back to the initial receptor states with a time constant of about 2s. Quantum yields of signalling state formation of about 90% for BlrB(II) and about 40% for BlrB(I) were determined by intensity dependent transmission measurements. Extended blue-light excitation causes unbound flavin degradation (formation of lumichrome and lumiflavin-derivatives) and bound cofactor conversion to the semiquinone form. The flavin-semiquinone further reduces and the reduced flavin re-oxidizes back in the dark. A photo-dynamics scheme is presented and relevant quantum efficiencies and time constants are determined.  相似文献   

11.
The Escherichia coli protein YcgF contains a photosensory flavin adenine dinucleotide (FAD)-binding BLUF domain covalently linked to an EAL domain, which is predicted to have cyclic-di-guanosine monophosphate (GMP) phosphodiesterase activity. We have cloned, overexpressed and purified this protein, which we refer to as blue light-regulated phosphodiesterase (Blrp) for its putative activity. Blrp undergoes a reversible photocycle after exposure to light in which the spectrum of its photostationary state and kinetics of recovery of the dark state are similar to those of the isolated BLUF domain of the AppA protein. Unlike the AppA BLUF domain, the chromophore environment in the context of full-length Blrp is asymmetric, and the protein does not undergo any detectable global changes on exposure to blue light. When overexpressed in E. coli, Blrp copurifies with certain proteins which suggests that it plays a protective role in response to oxidative stress. Predicted proteins from Klebsiella pneumoniae and from a bacterium in the Sargasso Sea are similar to E. coli Blrp in both their BLUF and EAL domains, which suggests that blue light sensing in these bacteria may follow similar pathways.  相似文献   

12.
BLUF (blue-light sensing using FAD) domains constitute a new family of flavin-based blue light photoreceptors. The photocycle of BLUF is unique in the sense that a few hydrogen bond rearrangements are accompanied by only slight structural changes in the bound chromophore. The hydrogen bond rearrangements upon illumination have been inferred from spectral changes in the chromophore: approximately 10 nm redshift of the absorption maximum and approximately 16 cm(-1) downshift of the C4=O stretching frequency. However, the exact features of the hydrogen bond network around the active site are still the subject of some controversy. In particular, the orientation of a conserved Gln (Gln63 in AppA) is presently one of the most questioned topics in the field. Here we perform molecular dynamics simulations for the wild-type AppA, AppA1-124C20S, BlrB and T110078 and furthermore quantum chemical calculations to investigate their spectroscopic properties in the dark and signaling states. On the basis of these results, we reveal the dynamic aspect of hydrogen bonding networks at the active site and propose theoretically reasonable models for the dark and signaling states of the BLUF domains.  相似文献   

13.
14.
15.
BLUF and LOV are blue-light sensor domains that possess flavin as a common chromophore but exhibit distinct photoreactions. Ile66 located in the BLUF domain of a cyanobacterial photosensor protein, TePixD, was replaced with Cys to mimic the LOV domain. Light-induced Fourier transform infrared spectra of the I66C TePixD showed that a flavin-Cys adduct, typical of the photoinduced intermediates of LOV domains, was formed in the I66C BLUF domain. This result demonstrates that different types of flavin photoreactions can be realized in the same domain if key amino acids are properly arranged near the flavin and the domain structure itself is not a crucial factor to determine the photoreaction type.  相似文献   

16.
17.
Flavin-based Blue-Light photosensors: a photobiophysics update   总被引:2,自引:0,他引:2  
This review deals with the biophysical aspects of flavin-based photosensors, comprising cryptochromes, LOV (Light, Oxygen and Voltage) and BLUF (Blue Light sensing Using FAD) proteins. Special emphasis is given to structural issues, photocycle quantum yields and energetics, mechanism of the light-triggered reactions, early stages in signal transduction and oligomeric states of the light sensing protein modules. For BLUF and LOV domains important parallels are emerging, despite their different alpha/beta fold arrangement, whereas there is increasing evidence for a mechanicistic and functional splitting of the cryptochrome family.  相似文献   

18.
Photoreceptor proteins bind a chromophore, which, upon light absorption, modifies its geometry or its interactions with the protein, finally inducing the structural change needed to switch the protein from an inactive to an active or signaling state. In the Blue Light-Using Flavin (BLUF) family of photoreceptors, the chromophore is a flavin and the changes have been connected with a rearrangement of the hydrogen bond network around it on the basis of spectroscopic changes measured for the dark-to-light conversion. However, the exact conformational change triggered by the photoexcitation is still elusive mainly because a clear consensus on the identity not only of the light activated state but also of the dark one has not been achieved. Here, we present an integrated investigation that combines microsecond MD simulations starting from the two conflicting crystal structures available for the AppA BLUF domain with calculations of NMR, IR and UV-Vis spectra using a polarizable QM/MM approach. Thanks to such a combined analysis of the three different spectroscopic responses, a robust characterization of the structure of the dark state in solution is given together with the uncovering of important flaws of the most popular molecular mechanisms present in the literature for the dark-to-light activation.

With an integrated molecular dynamics and QM/MM strategy we characterize the dark-state structure of a BLUF photoreceptor and ration alize the discrepancy between published crystal structures.  相似文献   

19.
Cyclic nucleotide, such as cyclic GMP, is a secondary messenger that regulates a wide range of biological process via the diverse signaling cascades. Photoactivated adenylyl cyclases (PACs), constituted of blue light utilizing flavin (BLUF) and cyclase homology domain (CHD), are used as an optogenetic tool to modulate the cyclic AMP (cAMP) level and to study cAMP-mediated signal transduction mechanisms. Here, we have engineered photoactivated adenylyl cyclases (PACs) from microbes to photoactivated guanylyl cyclases (PGCs) via mutagenesis of the substrate binding-specific residues in cyclase homology domain. We demonstrate purification, photodynamic, and detailed biochemical characterization of the engineered PGCs that can serve as optogenetic tool for manipulation of cGMP level in the cells. Engineered PGCs show typical BLUF photoreceptor properties with different recovery kinetics and varying light-regulated guanylyl cyclase activities.  相似文献   

20.
The Rhodobacter sphaeroides protein AppA has the unique quality of sensing and transmitting light and redox signals. By acting as antirepressor to the PpsR protein, it acts as a major regulator in photosynthesis gene expression. In this study, we show that by introducing amino acid exchanges into the AppA protein, the in vivo activity as an antirepressor can be greatly altered. The tryptophan 104 to phenylalanine (W104F) base exchange greatly diminished blue-light sensitivity of the BLUF domain. From the obtained in vivo data, the difference in thermal recovery rate of the signaling state of the BLUF domain between the wild type and mutated protein was calculated, predicting an about 10-fold faster recovery in the mutant, which is consistent with in vitro data. Introduction of a tyrosine 21 to phenylalanine (Y21F) or to cysteine (Y21C) mutation led to a complete loss of AppA antirepressor activity, while additionally leading to an increase of photosynthesis gene expression after illumination with high blue-light quantities. Interestingly, this effect is not visible in a W104F/Y21F double mutant that again shows a wild-type–like behavior of the BLUF domain after blue-light illumination, thus restoring the activity of AppA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号