首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 946 毫秒
1.
A nonlinear self-consistent analytic theory is developed to describe the front structure of a strong magnetohydrodynamic (MHD) collisionless shock wave that generates accelerated particles (including ultrarelativistic particles). The theory is used to predict the degree of compression of matter at the plane front of such a wave, which can greatly exceed compression at an ordinary gas-dynamic front, and also the velocity, density, and pressure profiles. The energy spectrum of the accelerated particles, which is produced by the complex velocity profile at the shock transition, is determined self-consistently. New nonlinear effects are predicted that have not been discussed previously in the literature: a strong dependence of the particle acceleration regimes on the rate of injection; the existence of several regimes within a certain range of injected powers with differing spectra of accelerated particles, shapes of the shock transition profile, and magnitudes of compression of the medium; and the possibility of spontaneous jumps between different states of the shock transition. The question of stability of these states is discussed. For the values of the system parameters used here, the nonlinear regimes correspond to extremely low injection rates, of order 10−2–10−10 of the plasma flux density advancing into the front, and to exponents of the power-law spectra of accelerated particles between 5 and 3. Zh. éksp. Teor. Fiz. 112, 1584–1602 (November 1997)  相似文献   

2.
The structure of a shock wave front at a velocity of 107–108 cm/s has been studied experimentally. The formation of a pre-heated layer caused by the thermal conductivity of the electrons before the shock wave has been observed for the first time.  相似文献   

3.
A dense compact plasmoid generated at the pinch collapse stage is revealed in a plasma focus discharge by laser optical methods. The initial size of the plasmoid is ~1 mm, its electron density is more than 2 × 1019 cm–3, and the plasmoid propagates along the axis from the anode at an average velocity of more than 107 cm/s. A shock wave is generated in the residual argon plasma during the motion of the bunch, its density decreases to 1018 cm–3 at a distance of 3 cm from its place of generation, and the plasmoid expands by 3–5 times and almost merges together with the leading edge of the shock wave.  相似文献   

4.
The effects of an absorptive coating on the dynamics of underwater laser-induced shock process have been observed from the end of laser pulse to hundreds of microseconds after irradiation by time-resolved imaging techniques. A laser pulse of 13 ns at 1,064 nm was focused by a 40-mm focal length lens onto the surface of epoxy-resin blocks immersed in water to induce the shock process in the confining regime. A custom-designed time-resolved photoelasticity imaging technique and a high-speed laser stroboscopic videography technique in photoelasticity mode were used to analyze the evolution of shock waves in the water phase, the strength of stress waves in the solid phase, the oscillation of cavitation bubbles, and the generation of bubble-collapse-induced shock waves. We showed that black paint coating enhances the strength of laser-induced stress wave inside the solid, drives faster shock waves traveling in the water phase, and produces higher-energy cavitation bubbles. We propose that even at power densities of 1 GW/cm2 and above, an absorptive coating can intensify the shock process by enhancing the absorption of laser energy by plasma.  相似文献   

5.
The formation of a condensation detonation wave has been experimentally observed in the shock-induced thermal decomposition of acetylene. The stable detonation wave in the 20% C2H2 + 80% Ar mixture has been obtained at an initial pressure behind the shock wave of no less than 30 atm. The main kinetic characteristics of the pyrolysis of acetylene—the period of the induction of condensation and the growth rate constant of condensed particles—have been determined. The correlation of various stages of the process with the heat release in the condensation has been analyzed. It has been shown that the period of the particle growth induction is not accompanied by noticeable heat release. The subsequent condensation stages characterized by significant heat release occur very rapidly (faster than 10−5 s) in the so-called explosive condensation. The analysis of the results indicates that the reactions leading to the growth of large polyhydrocarbon molecules, which precede the formation of condensed carbon particles, constitute the limiting stage of the process, which determines the possibility of the formation of the condensation detonation wave in acetylene. An increase in the pressure is accompanied by the sharp narrowing of the induction region and the transition of the process to the condensation detonation wave.  相似文献   

6.
The plastic deformation of metallic crystals under intense shock wave loading has been theoretically investigated. It has been experimentally found that the plastic strain rate $\dot \varepsilon $ and the pressure in the wave P are related by the empirical expression $\dot \varepsilon $ P 4 (the Swegle-Grady law). The performed dislocation-kinetic analysis of the mechanism of the origin of this relationship has revealed that its power-law character is determined by the power-law pressure dependence of the density of geometrically necessary dislocations generated at the shock wave front ρ ~ P 3. In combination with the rate of viscous motion of dislocations, which varies linearly with pressure (uP), this leads to the experimentally observed relationship $\dot \varepsilon $ P 4 for a wide variety of materials with different types of crystal lattices in accordance with the Orowan relationship for the plastic strain rate $\dot \varepsilon $ = bρu (where b is the Burgers vector). In the framework of the unified dislocation-kinetic approach, it has been theoretically demonstrated that the dependence of the pressure (flow stress) on the plastic strain rate over a wide range from 10?4 to 1010 s?1 reflects three successively developing processes: the thermally activated motion of dislocations, the viscous drag of dislocations, and the generation of geometrically necessary dislocations at the shock wave front.  相似文献   

7.
The mechanism of formation of a two-wave structure of plastic relaxation waves at shock wave stresses σ > 1 GPa (plastic strain rates $\dot \varepsilon $ > 106 s?1) has been theoretically considered using the dislocation kinetic equations and relationships. It has been shown that, under intense shock loading, two plastic relaxation waves are generated in the crystal. Initially, there arises the first wave (in the traditional terminology, it is an elastic precursor) associated with the generation of geometrically necessary dislocations at the boundary between the compressed and uncompressed parts of the crystal. Then, there arises the second wave due to the dislocation multiplication on geometrically necessary dislocations of the first wave in the form of forest dislocations. The dependences of the stresses on the plastic strain rate σ ~ $\dot \varepsilon ^{1/4} $ in the first wave and σ ~ $\dot \varepsilon ^{2/5} $ in the second wave, as well as the dependences of the stresses on the thickness of the target D, i.e., σ ~ D ?1/3 and σ ~ D ?2/3, respectively, have been determined by solving the relaxation equations. The obtained relationships have been confirmed by the experimental data available in the literature.  相似文献   

8.
The presence of dislocations has been revealed by numerical processing of high–resolution transmission electron microscopy images from the regions affected by a shock wave propagation. The shock wave was triggered by a single 220 fs duration pulse of 30 nJ at an 800 nm wavelength inside sapphire at approximately 10 μm depth. The shock-amorphised sapphire has a distinct boundary with the crystalline phase, which is not wet etchable even at a dislocation density of ≃8×1012 cm-2. PACS 81.07.-b; 96.50.Fm; 62.50.+p; 47.40.Nm; 81.40.-z  相似文献   

9.
A method for obtaining an intense secondary pulsed molecular beam is described. The kinetic energy of molecules in the beam can be controlled by vibrational excitation of the molecules in the source under high-power IR laser radiation. A compression shock (shock wave) is used as a source of secondary beams. The shock wave is formed in interaction between an intense pulsed supersonic molecular beam (or flow) and a solid surface. The characteristics of the secondary beam were studied. Its intensity and the degree of gas cooling in it were comparable with the corresponding characteristics of the unperturbed primary beam. Vibrational excitation of molecules in the shock wave and subsequent vibrational-translational relaxation, which occurs when a gas is expanded in a vacuum, allow the kinetic energy of molecules in the secondary beam to be substantially increased. Intense [≥1020 molecules/(sr s)] beams of SF6 and CF3I molecules with kinetic energies approximately equal to 1.5 and 1.2 eV, respectively, were generated in the absence of carrier gases, and SF6 molecular beams with kinetic energies approximately equal to 2.5 and 2.7 eV with He (SF6/He=1/10) and H2 (SF6/H2=1/10) as carrier gases, respectively, were obtained. The spectral and energy characteristics of acceleration of SF6 molecules in the secondary beams were studied. The optimal conditions were found for obtaining high-energy molecules. The possibility of accelerating radicals in secondary molecular beams was demonstrated.  相似文献   

10.
The dynamics of the melting of a surface nanolayer and the formation of thermal and shock waves in metals irradiated by femtosecond laser pulses has been investigated both experimentally and theoretically. A new experimental-computational method has been implemented to determine the parameters of laser-induced shock waves in metallic films. Data on the strength properties of the condensed phase in aluminum films at an extremely high strain rate ($ \dot V $ \dot V /V ∼ 109 s−1)under the action of a laser-induced shock wave have been obtained.  相似文献   

11.
通过平板冲击实验研究了富含微缺陷的非均质脆性固体的冲击压缩响应特性.选取“强角闪石化橄榄二辉岩”作为样品材料,利用激光速度干涉仪测量样品后自由面的速度历史,在冲击加载应力远低于样品材料Hugoniot弹性极限的条件下,观测到了表征破坏波出现的再加载信号,并且该破坏波的速度远大于玻璃中破坏波的速度,以接近于冲击波的速度在样品内向前传播,其形成机理与玻璃样品中的破坏机理不同,称之为“就位扩展机理”.采用同一冲击加载应力(~3.9GPa)作用于不同厚度的样品,获得了破坏波穿过样品的运动过程,确定出样品中破坏波的轨迹线近似为一条不过原点的直线,相应的产生此破坏波的弛豫时间约为0.5 μs.  相似文献   

12.
The possibility of the generation of quasi-cw terahertz radiation by the optical rectification method for broad-band Fourier unlimited nanosecond laser pulses has been experimentally demonstrated. The broadband radiation of a LiF dye-center laser is used as a pump source of a nonlinear optical oscillator. The energy efficiency of terahertz optical frequency conversion in a periodically polarized lithium niobate crystal is 4 × 10−9 at a pump power density of 7 MW/cm2.  相似文献   

13.
The energies of a shock wave generated in different metals under irradiation by a high-power laser beam were determined experimentally. The experiments were performed with the use of targets prepared from a number of metals, such as aluminum, copper, silver and lead (which belong to different periods of the periodic table) under irradiation by pulses of the first and third harmonics of the PALS iodine laser at a radiation intensity of approximately 1014 W/cm2. It was found that, for heavy metals, like for light solid materials, the fraction of laser radiation energy converted into the energy of a shock wave under irradiation by a laser pulse of the third harmonic considerably (by a factor of 2–3) exceeds the fraction of laser radiation energy converted under irradiation by a laser pulse of the first harmonic. The influence of radiation processes on the efficiency of conversion of the laser energy into the energy of the shock wave was analyzed.  相似文献   

14.
A new mechanism of destruction of transparent dielectrics with small highly-absorbing inclusions by using intensive laser emission has been suggested. It has been shown that for experimentally found values of threshold radiation intensity Ith ≈ 1 GW/cm2 and impurity concentration n ? 107 cm-3 radiation absorption outside the front of the impurity-initiated shock wave, when allowing for the collective action of waves, results in great heating of the dielectric surface layer which causes its destruction. The found critical value of impurity concentration is several orders less than the value estimated over a model of heating of an inclusion-surrounding dielectric at the expense of heat conductivity.  相似文献   

15.
The possibility of initiating detonation of CH4 + air in a supersonic flow behind an oblique shock wave under the exposure of the mixture to laser radiation with wavelengths λI=1.268 μm and 762 nm is analyzed. It is shown that this irradiation leads to excitation of O2 molecules to the a 1Δg and b 1Σ g + states, which intensifies the chain mechanism of combustion of CH4/O2 (air) mixtures. Even for a small value of the laser radiation energy absorbed by an O2 molecule (∼0.05–0.1 eV), detonation mode of combustion in a poorly inflammable mixture such as CH4/air can be realized at a distance of only 1 m from the primary shock wave front for relatively small values of temperature (∼1100 K) behind the front under atmospheric pressure.  相似文献   

16.
The propagation of shock waves in He and Ar containing 0.01% of molybdenum hexacarbonyl Mo(CO)6 as a heavy component of the mixture has been investigated with the use of the method of multichannel emission spectroscopy and an electrostatic probe with a spatial resolution of 0.2 mm placed in the core of a flow. The measurements have been carried out in incident shock waves with a high-vacuum shock tube in a Mach number range of 2.5–3.4. The equilibrium parameters behind the shock front are P 2 = 0.109–1.124 atm and T 2 = 853–1280 K, the concentration of Mo(CO)6 is specially controlled, and high-purity He and Ar are used. The experiments are carried out under conditions when collisions between heavy molecules can be disregarded. It has been found that a narrow conduction band with a carrier density of more than 105 cm?3 appears in the shock front. The carrier density and its time characteristics have been measured. A correlation has been found between the conduction band and peaks of the nonequilibrium radiation in the visible and ultraviolet spectral ranges. This radiation disappears when the equilibrium parameters are reached behind the shock wave. The arrival of the conduction band and radiation band in the shock front at the measurement section advances the arrival of the density gradient of the shock front in most regimes. It has been found that the maximum conduction increases as the square of the Mo(CO)6 concentration and decreases with increasing pressure. The effective threshold of the appearance of charges in the shock front has been determined as 1.35 ± 0.15 eV. A qualitative mechanism of the effect has been proposed with allowance for possible separation of charges in the shock front and with the inclusion of the “hot” wing of the energy distribution function of pair collisions.  相似文献   

17.
This paper presents the results of measurements of the dynamic elastic limit and spall strength under shock wave loading of specimens of the magnesium alloy Ma2-1 with a thickness ranging from 0.25 to 10 mm at normal and elevated (to 550°C) temperatures. From the results of measurements of the decay of the elastic precursor of a shock compression wave, it has been found that the plastic strain rate behind the front of the elastic precursor decreases from 2 × 105 s?1 at a distance of 0.25 mm to 103 s?1 at a distance of 10 mm. The plastic strain rate in a shock wave is one order of magnitude higher than that in the elastic precursor at the same value of the shear stress. The spall strength of the alloy decreases as the solidus temperature is approached.  相似文献   

18.
The formation of an energy cascade in a system of vortices generated by perpendicular standing waves with a frequency of 6 Hz on the water surface has been experimentally studied. It has been found that peaks appear on the energy distribution over wave vectors E(k) after switching on pumping. These peaks are transformed with time because of the energy redistribution over scales. The stationary distribution E(k) established 300 s after switching on pumping can be described by a power-law function of the wave vector E(k) ~ k1.75. It has been shown that waves with frequencies of about 18, 15, 12, 9, and 3 Hz appear on the surface of water owing to the nonlinear interaction at the excitation of a 6-Hz wave. It is assumed that the energy cascade of the turbulent motion in the wave vector range of 0.3–5 cm?1 is formed by the nonlinear interaction between vortices generated by all waves propagating on the surface and direct energy fluxes toward high wave vectors dominate.  相似文献   

19.
A novel coating approach, based on laser shock wave generation, was employed to induce compressive pressures up to 5 GPa and compact nanodiamond (ND) powders (4-8 nm) on aluminum 319 substrate. Raman scattering indicated that the coating consisted of amorphous carbon and nanocrystalline graphite with peaks at 1360 cm−1 and 1600 cm−1 respectively. Scanning electron microscopy revealed a wavy, non-uniform coating with an average thickness of 40 μm and absence of thermal effect on the surrounding material. The phase transition from nanodiamond to other phases of carbon is responsible for the increased coating thickness. Vicker's microhardness test showed hardness in excess of 1000 kgf/mm2 (10 GPa) while nanoindentation test indicated much lower hardness in the range of 20 MPa to 2 GPa. Optical surface profilometry traces displayed slightly uneven surfaces compared to the bare aluminum with an average surface roughness (Ra) in the range of 1.5-4 μm depending on the shock wave pressure and type of confining medium. Ball-on-disc tribometer tests showed that the coefficient of friction and wear rate were substantially lower than the smoother, bare aluminum sample. Laser shock wave process has thus aided in the generation of a strong, wear resistant, durable carbon composite coating on aluminum 319 substrate.  相似文献   

20.
The effects of the shock wave diffusive acceleration of particles are considered in the case of formation of isotopic relations of the anomalous Xe-HL component of xenon in relic grains of nanodiamonds in chondrites. It is shown that this component could be formed and captured simultaneously with the nanodiamond synthesis in the conditions of the explosive shock wave propagation from supernova outbursts. The specificity of isotopic composition of Xe-HL is due to the high hardness of the spectrum of nuclear-active particles at the shock wave front and its enrichment with heavy isotopes. The spallogenic nature of both the anomalous and normal components of xenon is ascertained, and the role of the subsequent evolutionary processes in the change of their isotopic systems is shown. Experimental evidence of the formation of the power law spectrum of particles with the spectral index γ ∼ 1 by the supersonic turbulence during the carbon-detonation supernova SnIa explosion is obtained; this perhaps opens new perspectives in studying the problem of the origin of cosmic rays. It is shown that at the stage of free expansion of the explosive shock wave, the degree of compression of the matter at the wave front was σ = 31 (the corresponding Mach number M ∼ 97); this led to a 31-fold increase of the magnetic field as well as of the maximum energy of accelerated particles, so that even the energy of protons reached ∼ 3 × 1015 eV, i.e., the “knee” region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号