首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intramolecular and intermolecular kinetic isotope effects (KIEs) were determined for hydroxylation of the enantiomers of trans-2-(p-trifluoromethylphenyl)cyclopropylmethane (1) by hepatic cytochrome P450 enzymes, P450s 2B1, Delta2B4, Delta2B4 T302A, Delta2E1, and Delta2E1 T303A. Two products from oxidation of the methyl group were obtained, unrearranged trans-2-(p-trifluoromethylphenyl)cyclopropylmethanol (2) and rearranged 1-(p-trifluoromethylphenyl)but-3-en-1-ol (3). In intramolecular KIE studies with dideuteriomethyl substrates (1-d(2)) and in intermolecular KIE studies with mixtures of undeuterated (1-d(0)) and trideuteriomethyl (1-d(3)) substrates, the apparent KIE for product 2 was consistently larger than the apparent KIE for product 3 by a factor of ca. 1.2. Large intramolecular KIEs found with 1-d(2) (k(H)/k(D) = 9-11 at 10 degrees C) were shown not to be complicated by tunneling effects by variable temperature studies with two P450 enzymes. The results require two independent isotope-sensitive processes in the overall hydroxylation reactions that are either competitive or sequential. Intermolecular KIEs were partially masked in all cases and largely masked for some P450s. The intra- and intermolecular KIE results were combined to determine the relative rate constants for the unmasking and hydroxylation reactions, and a qualitative correlation was found for the unmasking reaction and release of hydrogen peroxide from four of the P450 enzymes in the absence of substrate. The results are consistent with the two-oxidants model for P450 (Vaz, A. D. N.; McGinnity, D. F.; Coon, M. J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3555), which postulates that a hydroperoxy-iron species (or a protonated analogue of this species) is a viable electrophilic oxidant in addition to the consensus oxidant, iron-oxo.  相似文献   

2.
Using alpha-secondary kinetic isotope effects (2 degrees KIEs) in conjunction with primary (1 degrees ) KIEs, we have investigated the mechanism of environmentally coupled hydrogen tunneling in the reductive half-reactions of two homologous flavoenzymes, morphinone reductase (MR) and pentaerythritol tetranitrate reductase (PETNR). We find exalted 2 degrees KIEs (1.17-1.18) for both enzymes, consistent with hydrogen tunneling. These 2 degrees KIEs, unlike 1 degrees KIEs, are independent of promoting motions-a nonequilibrium pre-organization of cofactor and active site residues that is required to bring the reactants into a "tunneling-ready" configuration. That these 2 degrees KIEs are identical suggests the geometries of the "tunneling-ready" configurations in both enzymes are indistinguishable, despite the fact that MR, but not PETNR, has a clearly temperature-dependent 1 degrees KIE. The work emphasizes the benefit of combining studies of 1 degrees and 2 degrees KIEs to report on pre-organization and local geometries within the context of contemporary environmentally coupled frameworks for H-tunneling.  相似文献   

3.
Cyclooxygenases-1 and -2 are tyrosyl radical (Y·)-utilizing hemoproteins responsible for the biosynthesis of lipid-derived autocoids. COX-2, in particular, is a primary mediator of inflammation and believed to be up-regulated in many forms of cancer. Described here are first-of-a-kind studies of COX-2-catalyzed oxidation of the substrate analogue linoleic acid. Very large (≥20) temperature-independent deuterium kinetic isotope effects (KIEs) on the rate constant for enzyme turnover were observed, due to hydrogen atom abstraction from the bisallylic C-H(D) of the fatty acid. The magnitude of the KIE depends on the O(2) concentration, consistent with reversible H/D tunneling mediated by the catalytic Y·. At physiological levels of O(2), retention of the hydrogen initially abstracted by the catalytic tyrosine results in strongly temperature-dependent KIEs on O-H(D) homolysis, also characteristic of nuclear tunneling.  相似文献   

4.
The H/D primary kinetic isotope effect (KIE) for the hydride transfer reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR) is calculated as a function of temperature employing ensemble-averaged variational transition-state theory with multidimensional tunneling. The calculated KIEs display only a small temperature dependence over the temperature range of 5 to 45 degrees C. We identify two key features that contribute to canceling most of the temperature dependence of the KIE that would be expected on the basis of simpler models. Related issues such as the isotope effects on Arrhenius preexponential factors, large differences between free energies of activation and Arrhenius activation energy, and fluctuations of effective barriers are also discussed.  相似文献   

5.
Intramolecular kinetic isotope effects (KIEs) were determined for cytochrome P450-catalyzed hydroxylation reactions of methyl-dideuterated trans-2-phenylcyclopropylmethane-d2 (1-d2), which gives two products from oxidation of the methyl group, trans-2-phenylcyclopropylmethanol (2) and 1-phenyl-3-buten-1ol (3). In oxidations of each enantiomer of 1-d2 with three P450 enzymes (CYP2B1, CYPDelta2E1, and CYPDelta2E1 T303A), the apparent intramolecular KIEs were different for products 2 and 3 in all cases and different for each enzyme-substrate combination. In oxidations of each enantiomer of undeuterated 1-d0 and trideuteriomethyl 1-d3 by CYP2B1 and CYPDelta2E1, the ratio of products 2/3 decreased for 1-d3 in comparison to 1-d0 in all cases. The results require multiple pathways for P450-catalyzed hydroxylation and are consistent with the "two-oxidants" model, where hydroxylation is effected by both the hydroperoxy-iron species and the iron-oxo species. The results are not consistent with predictions of the "two-states" model for P450-catalyzed hydroxylations, where oxidations occur from a low-spin state and a high-spin state of iron-oxo.  相似文献   

6.
A model is presented for coupled hydrogen-electron transfer reactions in condensed phase in the presence of a rate promoting vibration. Large kinetic isotope effects (KIEs) are found when the hydrogen is substituted with deuterium. While these KIEs are essentially temperature independent, reaction rates do exhibit temperature dependence. These findings agree with recent experimental data for various enzyme-catalyzed reactions, such as the amine dehydrogenases and soybean lipoxygenase. Consistent with earlier results, turning off the promoting vibration results in an increased KIE. Increasing the barrier height increases the KIE, while increasing the rate of electron transfer decreases it. These results are discussed in light of other views of vibrationally enhanced tunneling in enzymes.  相似文献   

7.
The kinetic isotope effect (KIE) is key to understanding reaction mechanisms in many areas of chemistry and chemical biology, including organometallic chemistry. This ratio of rate constants, kH/kD, typically falls between 1–7. However, KIEs up to 105 have been reported, and can even be so large that reactivity with deuterium is unobserved. We collect here examples of large KIEs across organometallic chemistry, in catalytic and stoichiometric reactions, along with their mechanistic interpretations. Large KIEs occur in proton transfer reactions such as protonation of organometallic complexes and clusters, protonolysis of metal–carbon bonds, and dihydrogen reactivity. C−H activation reactions with large KIEs occur with late and early transition metals, photogenerated intermediates, and abstraction by metal-oxo complexes. We categorize the mechanistic interpretations of large KIEs into the following three types: (a) proton tunneling, (b) compound effects from multiple steps, and (c) semi-classical effects on a single step. This comprehensive collection of large KIEs in organometallics provides context for future mechanistic interpretation.  相似文献   

8.
It has been suggested that the magnitudes of secondary kinetic isotope effects (2 degrees KIEs) of enzyme-catalyzed reactions are an indicator of the extent of reaction-center rehybridization at the transition state. A 2 degrees KIE value close to the corresponding secondary equilibrium isotope effects (2 degrees EIE) is conventionally interpreted as indicating a late transition state that resembles the final product. The reliability of using this criterion to infer the structure of the transition state is examined by carrying out a theoretical investigation of the hybridization states of the hydride donor and acceptor in the Escherichia coli dihydrofolate reductase (ecDHFR)-catalyzed reaction for which a 2 degrees KIE close to the 2 degrees EIE was reported. Our results show that the donor carbon at the hydride transfer transition state resembles the reactant state more than the product state, whereas the acceptor carbon is more productlike, which is a symptom of transition state imbalance. The conclusion that the isotopically substituted carbon is reactant-like disagrees with the conclusion that would have been derived from the criterion of 2 degrees KIEs and 2 degrees EIEs, but the breakdown of the correlation with the equilibrium isotope effect can be explained by considering the effect of tunneling.  相似文献   

9.
The literature hypothesis that "the optimization of enzyme catalysis may entail the evolutionary implementation of chemical strategies that increase the probability of quantum-mechanical tunneling" is experimentally tested herein for the first time. The system employed is the key to being able to provide this first experimental test of the "enhanced hydrogen tunneling" hypothesis, one that requires a comparison of the three criteria diagnostic of tunneling (vide infra) for the same, or nearly the same, reaction with and without the enzyme. Specifically, studied herein are the adenosylcobalamin (AdoCbl, also known as coenzyme B(12))-dependent diol dehydratase model reactions of (i). H(D)(*) atom abstraction from ethylene glycol-d(0) and ethylene glycol-d(4) solvent by 5'-deoxyadenosyl radical (Ado(*)) and (ii.) the same H(*) abstraction reactions by the 8-methoxy-5'-deoxyadenosyl radical (8-MeOAdo(*)). The Ado(*) and 8-MeOAdo(*) radicals are generated by Co-C thermolysis of their respective precursors, AdoCbl and 8-MeOAdoCbl. Deuterium kinetic isotope effects (KIEs) of the H(*)(D(*)) abstraction reactions from ethylene glycol have been measured over a temperature range of 80-120 degrees C: KIE = 12.4 +/- 1.1 at 80 degrees C for Ado(*) and KIE = 12.5 +/- 0.9 at 80 degrees C for 8-MeOAdo(*) (values ca. 2-fold that of the predicted maximum primary times secondary ground-state zero-point energy (GS-ZPE) KIE of 6.4 at 80 degrees C). From the temperature dependence of the KIEs, zero-point activation energy differences ([E(D) - E(H)]) of 3.0 +/- 0.3 kcal mol(-)(1) for Ado(*) and 2.1 +/- 0.6 kcal mol(-)(1) for 8-MeOAdo(*) have been obtained, both of which are significantly larger than the nontunneling, zero-point energy only maximum of 1.2 kcal mol(-)(1). Pre-exponential factor ratios (A(H)/A(D)) of 0.16 +/- 0.07 for Ado(*) and 0.5 +/- 0.4 for 8-MeOAdo(*) are observed, both of which are significantly less than the 0.7 minimum for nontunneling behavior. The data provide strong evidence for the expected quantum mechanical tunneling in the Ado(*) and 8-MeOAdo(*)-mediated H(*) abstraction reactions from ethylene glycol. More importantly, a comparison of these enzyme-free tunneling data to the same KIE, (E(D) - E(H)) and A(H)/A(D) data for a closely related, Ado(*)-mediated H(*) abstraction reaction from a primary CH(3)- group in AdoCbl-dependent methylmalonyl-CoA mutase shows the enzymic and enzyme-free data sets are identical within experimental error. The Occam's Razor conclusion is that at least this adenosylcobalamin-dependent enzyme has not evolved to enhance quantum mechanical tunneling, at least within the present error bars. Instead, this B(12)-dependent enzyme simply exploits the identical level of quantum mechanical tunneling that is available in the enzyme-free, solution-based H(*) abstraction reaction. The results also require a similar, if not identical, barrier width and height within experimental error for the H(*) abstraction both within, and outside of, the enzyme.  相似文献   

10.
The temperature dependence of the primary kinetic isotope effect (KIE), combined temperature-pressure studies of the primary KIE, and studies of the alpha-secondary KIE previously led us to infer that hydride transfer from nicotinamide adenine dinucleotide to flavin mononucleotide in morphinone reductase proceeds via environmentally coupled hydride tunneling. We present here a computational analysis of this hydride transfer reaction using QM/MM molecular dynamics simulations and variational transition-state theory calculations. Our calculated primary and secondary KIEs are in good agreement with the corresponding experimental values. Although the experimentally observed KIE lies below the semiclassical limit, our calculations suggest that approximately 99% of the reaction proceeds via tunneling: this is the first "deep tunneling" reaction observed for hydride transfer. We also show that the dominant tunneling mechanism is controlled by the isotope at the primary rather than the secondary position: with protium in the primary position, large-curvature tunneling dominates, whereas with deuterium in this position, small-curvature tunneling dominates. Also, our study is consistent with tunneling being preceded by reorganization: in the reactant, the rings of the nicotinamide and isoalloxazine moieties are stacked roughly parallel to each other, and as the system moves toward a "tunneling-ready" configuration, the nicotinamide ring rotates to become almost perpendicular to the isoalloxazine ring.  相似文献   

11.
We report here a theoretical study of the 13C kinetic isotope effect (KIE) and its temperature dependence for the reaction OH + CH4 --> H2O + CH3, the major sink of atmospheric methane in the troposphere. The KIE values at various atmospherically significant temperatures were determined by direct dynamics using variational transition state theory with multidimensional tunneling contributions (VTST/MT). The potential energy surfaces (PESs) were generated by hybrid density functional theory as well as by recently developed doubly hybrid density functional theory methods. Comparisons of our calculated KIEs with experimental data and theoretical values in the literature reveal the critical contributions due to multidimensional tunneling and torsion anharmonicity as well as the critical issue of the choice of internal rotational axis.  相似文献   

12.
13.
13C-kinetic isotope effects (KIEs) of four cinnamyl alcohol oxidations and a xylose reductase-catalyzed cinnamyl aldehyde reduction have been determined by 13C NMR using competition reactions with reactants at natural 13C-abundance. Differences in KIEs among oxidations indicate dissimilarities between the respective hydrogen transfers. Their mechanistic implications are discussed. A low primary KIE of the enzymatic reduction is consistent with a kinetically complex mechanism in which steps other than the chemical step of hydride transfer from NADH are slow.  相似文献   

14.
Doll KM  Finke RG 《Inorganic chemistry》2003,42(16):4849-4856
An intriguing but controversial hypothesis has appeared that "The optimization of enzyme catalysis may entail the evolutionary implementation of chemical strategies that increase the probability of tunneling and thereby accelerate the reaction rate" (Kohen, A.; Klinman, J. P. Acc. Chem. Res. 1998, 31, 397). Restated, enzymes may have evolved to enhance quantum mechanical tunneling by coupling to protein low nu modes that squeeze the reacting centers together in, for example, their H(*) atom abstraction reactions. Such a putative "protein squeezing" mechanism would enhance hydrogen quantum mechanical tunneling by reducing the barrier width. An alternative hypothesis is that enzymes do not enhance tunneling, but simply exploit the same amount of tunneling present in their enzyme-free solution reactions, if those reactions occur. A third, conceivable hypothesis is that enzymes might even inadvertently decrease the amount of tunneling as an undesired result of increasing the barrier width while reducing the barrier height. Testing these hypotheses experimentally requires the extremely rare event of being able to measure the amount of tunneling both in the enzyme system and in a very similar if not identical reaction in enzyme-free solution. This has been accomplished experimentally in only one prior case, our recent study of AdoCbl (coenzyme B(12)) and 8-Meo-AdoCbl undergoing enzyme-like H(*) abstraction reactions (Doll, K. M.; Bender, B. R.; Finke, R. G. to J. Am. Chem. Soc. 2003, in press). The data there reveal no change in the level of tunneling within or outside of the enzyme in comparison to the best literature data for an AdoCbl-dependent enzyme, methylmalonyl-CoA mutase. However, that first system suffers from two limitations: the measurement of the KIE (kinetic isotope effect) data in a nonenzymic 80-110 degrees C temperature range; and lower precision data than desired due to the HPLC-MS method required for one of the KIE analyses. These limitations have now been overcome by the synthesis, then thermolysis and KIE study vs temperature of the H(*) abstraction reaction of beta-neopentylcobalamin (beta-NpCbl) in ethylene glycol-d(0) and ethylene glycol-d(4). This is the first experimental test of Klinman's hypothesis using KIE data obtained at enzyme-relevant temperatures. The key data obtained are as follows: deuterium KIEs of 23.1 +/- 3.0 at 40 degrees C to 39.0 +/- 2.3 at 10 degrees C; an activation energy difference E(D) - E(H) of 3.1 +/- 0.3 kcal mol(-)(1); and a pre-exponential factor ratio A(H)/A(D) of 0.14 +/- 0.07. Moreover, our now three sets of data (NpCbl; AdoCbl; 8-MeOAdoCbl) are shown to lie on the same ln KIE vs 1/T linear plot yielding a set of enzyme-temperature-relevant, high-precision KIE, E(D) - E(H), and A(H)/A(D) data over a relatively large, 110 degrees C temperature range. Significantly, the enzyme-free solution KIE, E(D) - E(H), and A(H)/A(D) are identical within experimental error to those for methylmalonyl-CoA mutase. This finding leads to the conclusion that there is no enzymic enhancement of the tunneling in at least this B(12)-dependent enzyme. This B(12) enzyme does, however, exploit the same (unchanged) level of tunneling measured for the nonenzymic, Ado(*) solution H(*) abstraction reaction. A discussion is presented of the still open question of if this first experimental finding, of "no enzymic enhancement of tunneling" in one B(12)-dependent enzymic system, is likely to prove more general or not.  相似文献   

15.
16.
Carbon-13 kinetic isotope effects (KIEs) have been determined for free-radical and copper-mediated living radical polymerizations of methyl methacrylate at 60 degrees C. While free-radical polymerization shows only one primary 13C KIE, on the least-substituted double bond carbon (k12/k13 = 1.045), two significant KIEs are observed, one on each double bond carbon, for copper-mediated polymerization (k12/k13(H2C=) = 1.050, k12/k13(=C <) = 1.010), showing that copper-mediated living radical polymerization does not propagate via a simple free radical process.  相似文献   

17.
Xylose isomerase exhibits a bridged-bimetallic active-site motif in which the substrate is bound to two metals connected by a glutamate bridge, and X-ray crystallographic studies suggest that metal movement is involved in the hydride transfer rate-controlling catalytic step. Here we report classical/quantal dynamical simulations of this step that provide new insight into the metal motion. The potential energy surface is calculated by treating xylose with semiempirical molecular orbital theory augmented by a simple valence bond potential and the rest of the system by molecular mechanics. The rate constant for the hydride-transfer step was calculated by ensemble-averaged dynamical simulations including both variational transition-state theory for determination of the statistically averaged dynamical bottleneck and optimized multidimensional tunneling calculations. The dynamics calculations include 25 317 atoms, with quantized vibrational free energy in 89 active-site degrees of freedom, and with 32 atoms moving through static secondary zone transition-state configurations in the quantum tunneling simulation. Our simulations show that the average Mg-Mg distance R increases monotonically as a function of the hydride-transfer progress variable z. The range of the average R along the reaction path is consistent with the X-ray structure, thus providing a dynamical demonstration of the postulated role of Mg in catalysis. We also predicted the primary deuterium kinetic isotope effect (KIE) for the chemical step. We calculated a KIE of 3.8 for xylose at 298 K, which is consistent with somewhat smaller experimentally observed KIEs for glucose substrate at higher temperatures. More than half of our KIE is due to tunneling; neglecting quantum effects on the reaction coordinate reduces the calculated KIE to 1.8.  相似文献   

18.
Rates, kinetic isotope effects (KIE), and Swain-Schaad exponents (SSE) have been calculated for a variety of isotopologues for the [1,5] shift in (Z)-1,3-pentadiene using mPW1K/6-31+G(d,p). Quantum mechanical effects along the reaction coordinate were incorporated with the zero-curvature tunneling (ZCT) model and with the multidimensional small curvature tunneling (SCT) model, which allows for coupling of modes perpendicular to the reaction coordinate. The latter model gives the best agreement with experimental rates and primary KIEs. The small quasiclassical primary KIE (2.6) is rationalized in terms of a nonlinear transition state. For sp3 to sp2 rehybridization, the quasiclassical alpha-secondary KIE shows an unusual inverse effect due to compression of the nonbonding hydrogens in the suprafacial transition state. SCT transmission coefficients (kappa) increase the rates by as much as one order of magnitude. Tunneling allows the reactant to evade 1-2.5 kcal/mol of the barrier depending on the isotope. Inclusion of tunneling in the secondary KIE increases it beyond the equilibrium isotope effect and converts the inverse effect (0.95) into a normal KIE (1.12). Tunneling was found to deflate the primary y SSE but by an amount too small to distinguish it from the quasiclassical SSE. On the other hand, when a specific labeling pattern is used, the difference between the quasiclassical secondary SSE (4.1) and the tunneling secondary SSE (2.3) may be sufficiently large to detect tunneling. The mixed secondary SSE shows even larger differences.  相似文献   

19.
This work describes the application of NMR to the measurement of secondary deuterium (2° (2)H) and carbon-13 ((13)C) kinetic isotope effects (KIEs) at positions 9-13 within the substrate linoleic acid (LA) of soybean lipoxygenase-1. The KIEs have been measured using LA labeled with either protium (11,11-h2-LA) or deuterium (11,11-d2-LA) at the reactive C11 position, which has been previously shown to yield a primary deuterium isotope effect of ca. 80. The conditions of measurement yield the intrinsic 2° (2)H and (13)C KIEs on k(cat)/K(m) directly for 11,11-d2-LA, whereas the values for the 2° (2)H KIEs for 11,11-h2-LA are obtained after correction for a kinetic commitment. The pattern of the resulting 2° (2)H and (13)C isotope effects reveals values that lie far above those predicted from changes in local force constants. Additionally, many of the experimental values cannot be modeled by electronic effects, torsional strain, or the simple inclusion of a tunneling correction to the rate. Although previous studies have shown the importance of extensive tunneling for cleavage of the primary hydrogen at C11 of LA, the present findings can only be interpreted by extending the conclusion of nonclassical behavior to the secondary hydrogens and carbons that flank the position undergoing C-H bond cleavage. A quantum mechanical method introduced by Buhks et al. [J. Phys. Chem. 1981, 85, 3763] to model the inner-sphere reorganization that accompanies electron transfer has been shown to be able to reproduce the scale of the 2° (2)H KIEs.  相似文献   

20.
Direct-dynamics canonical variational transition-state theory calculations with microcanonically optimized multidimensional transmission coefficient (CVT/muOMT) for tunneling were carried out at the MPWB1K/6-31+G(d,p) level to study the [1,7] sigmatropic hydrogen rearrangement in 7-methylocta-1,3(Z),5(Z)-triene. This compound has seven conformers, of which only one leads to products, although all of them have to be included in the theoretical treatment. The calculated CVT/muOMT rate constants are in good agreement with the available experimental data. To try to understand the role of tunneling in the hydrogen shift reaction, we have also calculated the thermal rate constants for the monodeuterated compound in the interval T = 333.2-388.2 K. This allowed us to evaluate primary kinetic isotope effects (KIEs) and make a direct comparison with the experiment. Our calculations show that both the large measured KIE and the large measured difference in the activation energies between the deuterated and root compounds are due to the quantum tunneling. The tunneling contribution to the KIE becomes noticeable only when the coupling between the reaction coordinate and the transverse modes is taken into account. Our results confirm previous experimental and theoretical works, which guessed that the obtained kinetic parameters pointed to a reaction with an important contribution due to tunneling. The above conclusion would be essentially valid for the case of the [1,7] hydrogen shift in previtamin D3 because of the similarity to the studied model system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号