首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The local hydrogen-bonding environment in supercritical water (380 degrees C, 300 bars, density 0.54 gcm3) was studied by x-ray Raman scattering at the oxygen K edge. The spectra are compared to those of the gas phase, liquid surface, bulk liquid, and bulk ice, as well as to calculated spectra. The experimental model systems are used to assign spectral features and to quantify specific local hydrogen-bonding situations in supercritical water. The first coordination shell of the molecules is characterized in more detail with the aid of the calculations. Our analysis suggests that approximately 65% of the molecules in supercritical water are hydrogen bonded in configurations that are distinctly different from those in liquid water and ice. In contrast to liquid water the bonded molecules in supercritical water have four intact hydrogen bonds and in contrast to ice large variations of bond angles and distances are observed. The remaining approximately 35% of the molecules exhibit two free O-H bonds and are thus either not involved in hydrogen bonding at all or have one or two hydrogen bonds on the oxygen side. We determine an average O-O distance of 3.1+/-0.1 A in supercritical water for the H bonded molecules at the conditions studied here. This and the corresponding hydrogen bond lengths are shown to agree with neutron- and x-ray-diffraction data at similar conditions. Our results on the local hydrogen-bonding environment with mainly two disparate hydrogen-bonding configurations are consistent with an extended structural model of supercritical water as a heterogeneous system with small patches of bonded molecules in various tetrahedral configurations and surrounding nonbonded gas-phase-like molecules.  相似文献   

2.
We calculate the near-edge x-ray-absorption fine structure of H(2)O in the gas, hexagonal ice, and liquid phases using heuristic density-functional based methods. We present a detailed comparison of our results with experiment. The differences between the ice and water spectra can be rationalized in terms of the breaking of hydrogen bonds around the absorbing molecule. In particular the increase in the pre-edge absorption feature from ice to water is shown to be due to the breaking of a donor hydrogen bond. We also find that in water approximately 19% of hydrogen bonds are broken.  相似文献   

3.
Configurational contributions of hydrogen bonds to thermodynamic properties of water (internal energy, entropy, and heat capacity) are calculated on the basis of statistical distributions of frequencies of the OH vibrations of liquid water, calculated earlier from the experimental Raman spectra in frameworks of the fluctuation theory of hydrogen bonding. Distributions of the energy of hydrogen bonds are determined. It is shown by comparison with computer experiments that previously established dependence of energy on frequency, E(nu), must be considered in this formalism as the effective energy of hydrogen bonding averaged over those configurations of hydrogen bridge O-H...O which lead to the given frequency nu in the vibrational spectrum. Contribution of van der Waals interactions not affecting the frequency shift to heat capacity is evaluated.  相似文献   

4.
We present a first-principles theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in heavy water without using any empirical model potentials. The calculations are based on ab initio molecular dynamics simulations for trajectory generation and a time series analysis using the wavelet method for frequency calculations. It is found that, in deuterated water, although a one-to-one relation does not exist between the instantaneous frequency of an OD bond and the distance of its associated hydrogen bond, such a relation does hold on average. The dynamics of spectral diffusion is investigated by means of frequency-time correlation and spectral hole dynamics calculations. Both of these functions are found to have a short-time decay with a time scale of approximately 100 fs corresponding to dynamics of intact hydrogen bonds and a slower long-time decay with a time constant of approximately 2 ps corresponding to lifetimes of hydrogen bonds. The connection of the slower time scale to the dynamics of local structural relaxation is also discussed. The dynamics of hydrogen bond making is shown to have a rather fast time scale of approximately 100 fs; hence, it can also contribute to the short-time dynamics of spectral diffusion. A damped oscillation is also found at around 150-200 fs, which is shown to have come from underdamped intermolecular vibrations of a hydrogen-bonded water pair. Such assignments are confirmed by independent calculations of power spectra of intermolecular motion and hydrogen bond kinetics using the population correlation function formalism. The details of the time constants of frequency correlations and spectral shifts are found to depend on the frequencies of chosen OD bonds and are analyzed in terms of the dynamics of hydrogen bonds of varying strengths and also of free non-hydrogen-bonded OD groups.  相似文献   

5.
We have investigated the pressure-induced spectral changes and the proton exchange reactions of D(2)-H(2)O mixtures to 64 GPa using micro-Raman spectroscopy. The results show the profound difference in the rotational and vibrational Raman spectra of hydrogen isotopes from those of the pure samples, showing the vibrational modes at higher frequencies and continuing to increase with pressure without apparent turnover. This indicates the repulsive nature of D(2)-H(2)O interaction without hydrogen bonds between the two and, thus, interstitial fillings of D(2) molecules into the bcc-like ice lattice. The spectral analysis using the Morse potential yields a hydrogen bond distance of 0.734 ? at 6 GPa--slightly shorter than that in pure--attributed to the repulsive interaction. The pressure-dependent spectral changes suggest that the proton-ordering transition in the ice lattice occurs over a large pressure range between 28 and 50 GPa, which is substantially lower than that of pure ice (40-80 GPa). This again indicates the presence of high internal pressure arising from the repulsive interaction. The Raman spectra show evidences that the proton exchange occurs in various phases including in solid D(2) and H(2)O mixtures. Based on the time-dependent spectral changes, we obtained the proton exchange rates of k ~ 0.085 h(-1) at 0.2 GPa in fluid D(2) and water mixtures, k ~ 0.03 h(-1) and 0.003 h(-1) at 2 GPa and 4 GPa, respectively, in fluid D(2)-ice mixtures, and k ~ 10(-3) h(-1) at 8 GPa in solid D(2) and ice mixtures.  相似文献   

6.
彭昌盛 《化学学报》2009,67(16):1936-1942
水的一些奇特性质主要源于水分子之间存在的氢键, 但在分子尺度上的氢键结构和数据仍是目前研究和争论的焦点. 统计分析了目前文献中普遍采用的水分子和氢键结构数据, 并在此基础上应用AutoCAD图形软件模拟出(H2O)10结构的最小冰聚体结构单元(Minimum Ice Structural Unit, MISU)模型, 以及由MISU聚合而成的冰晶体三维模型. 根据MISU模型, 可以计算得到冰在0 ℃融化为水、水由0 ℃加热至100 ℃、水在100 ℃汽化为水蒸气的三相转化过程中分别需要吸收5.86, 4.40和24.94 kJ•mol-1的能量以断裂16.7%, 12.5%和70.8%的氢键. 如若不考虑氢键的影响, 那么计算得到水的融化热和汽化热分别为0.15和15.73 kJ•mol-1, 与VIA族氢化物H2S, H2Se, H2Te的融化热和汽化热基本呈线性关系. 另外, 由MISU模型计算得到冰在0 ℃融化为水时, 密度由923.17 kg•m-3增至999.89 kg•m-3, 亦与实际测量数据基本一致.  相似文献   

7.
We utilized X-ray absorption spectroscopy (XAS) and X-ray Raman scattering (XRS) in order to study the ion solvation effect on the bulk hydrogen bonding structure of water. The fine structures in the X-ray absorption spectra are sensitive to the local environment of the probed water molecule related to the hydrogen bond length and angles. By varying the concentration of ions, we can distinguish between contributions from water in the bulk and in the first solvation sphere. We show that the hydrogen bond network in bulk water, in terms of forming and breaking hydrogen bonds as detected by XAS/XRS, remains unchanged, and only the water molecules in the close vicinity to the ions are affected.  相似文献   

8.
The microwave spectra of (methylenecyclopropyl)methanol (H(2)C=C(3)H(3)CH(2)OH) and one deuterated species (H(2)C=C(3)H(3)CH(2)OD) have been investigated in the 20-80 GHz spectral range. Accurate spectral measurements have been performed in the 40-80 GHz spectral interval. The spectra of two rotameric forms, denoted conformer I and conformer IX, have been assigned. Both these rotamers are stabilized by intramolecular hydrogen bonds formed between the hydrogen atom of the hydroxyl group and the pseudo-pi electrons on the outside of the cyclopropyl ring, the so-called "banana bonds". The carbon-carbon bond lengths in the ring are rather different. The bonds adjacent to the methylene group (H(2)C=) are approximately 7 pm shorter that the carbon-carbon bond opposite to this group. It is found from relative intensity measurements of microwave transitions that conformer IX, in which the hydrogen bond is formed with the banana bonds of the long carbon-carbon bond, is 0.4(3) kJ/mol more stable than conformer I, where the hydrogen bond is formed with the pseudo-pi electrons belonging to the shortest carbon-carbon bond of the ring. The microwave study has been augmented by quantum chemical calculations at the MP2/6-311++G, G3 and B3LYP/6-311++G levels of theory.  相似文献   

9.
A near‐IR spectral study on pure water and aqueous salt solutions is used to investigate stoichiometric concentrations of different types of hydrogen‐bonded water species in liquid water and in water comprising the hydration shell of salts. Analysis of the thermodynamics of hydrogen‐bond formation signifies that hydrogen‐bond making and breaking processes are dominated by enthalpy with non‐negligible heat capacity effects, as revealed by the temperature dependence of standard molar enthalpies of hydrogen‐bond formation and from analysis of the linear enthalpy–entropy compensation effects. A generalized method is proposed for the simultaneous calculation of the spectrum of water in the hydration shell and hydration number of solutes. Resolved spectra of water in the hydration shell of different salts clearly differentiate hydrogen bonding of water in the hydration shell around cations and anions. A comparison of resolved liquid water spectra and resolved hydration‐shell spectra of ions highlights that the ordering of absorption frequencies of different kinds of hydrogen‐bonded water species is also preserved in the bound state with significant changes in band position, band width, and band intensity because of the polarization of water molecules in the vicinity of ions.  相似文献   

10.
Time-dependent density functional theory (TD-DFT) method was used to study the excited-state hydrogen bonding of three esculetin complexes formed with aprotic solvents. The geometric structures, molecular orbitals (MOs), electronic spectra and the infrared (IR) spectra of the three doubly hydrogen-bonded complexes formed by esculetin and aprotic solvents dimethylsulfoxide (DMSO), tetrahyrofuran (THF) and acetonitrile (ACN) in both ground state S(0) and the first singlet excited state S(1) were calculated by the combined DFT and TD-DFT methods with the COSMO solvation model. Two intermolecular hydrogen bonds can be formed between esculetin and the aprotic solvent in each hydrogen-bonded complex. Based on the calculated bond lengths of the hydrogen bonds and the groups involved in the formation of the intermolecular hydrogen bonds in different electronic states, it is demonstrated that one of the two hydrogen bonds formed in each hydrogen-bonded complex is strengthened while the other one is weakened upon photoexcitation. Furthermore, it is found that the strength of the intermolecular hydrogen bonds formed in the three complexes becomes weaker as the solvents change from DMSO, via THF, to ACN, which is suggested to be due to the decrease of the hydrogen bond accepting (HBA) ability of the solvents. The spectral shifts of the calculated IR spectra further confirm the strengthening and weakening of the intermolecular hydrogen bonds upon the electronic excitation. The variations of the intermolecular hydrogen bond strengths in both S(0) and S(1) states are proposed to be the main reasons for the gradual spectral shifts in the absorption and fluorescence spectra both theoretically and experimentally.  相似文献   

11.
X-ray absorption spectra of aqueous 4 and 6 M potassium hydroxide solutions have been measured near the oxygen K edge. Upon addition of KOH to water, a new spectral feature (532.5 eV) emerges at energies well below the liquid water pre-edge feature (535 eV) and is attributed to OH- ions. In addition to spectral changes explicitly due to absorption by solvated OH- ions, calculated XA spectra indicate that first-solvation-shell water molecules exhibit an absorption spectrum that is unique from that of bulk liquid water. It is suggested that this spectral change results primarily from direct electronic perturbation of the unoccupied molecular orbitals of first-shell water molecules and only secondarily from geometric distortion of the local hydrogen bond network within the first hydration shell. Both the experimental and the calculated XA spectra indicate that the nature of the interaction between the OH- ion and the solvating water molecules is fundamentally different than the corresponding interactions of aqueous halide anions with respect to this direct orbital distortion. Analysis of the Mulliken charge populations suggests that the origin of this difference is a disparity in the charge asymmetry between the hydrogen atoms of the solvating water molecules. The charge asymmetry is induced both by electric field effects due to the presence of the anion and by charge transfer from the respective ions. The computational results also indicate that the OH- ion exists with a predominately "hyper-coordinated" solvation shell and that the OH- ion does not readily donate hydrogen bonds to the surrounding water molecules.  相似文献   

12.
The procedure previously used to determine the interaction configurations of H2O molecules in various polysaccharides is applied to a protein: Stratum Corneum (SC). It consists of following by infrared (IR) spectrometry the evaporation, heating and addition of water to a SC membrane. Analyses of the spectra corresponding to these experiments show that even H2O molecules in equilibrium with the atmosphere are inserted in the protein itself and are held by one hydrogen bond which they accept from an N---H group of the protein and at least one hydrogen bond which they establish (donate) on a C=O group of the protein. At higher concentrations of water, H2O molecules aggregate and form microdroplets embedded in the protein. Addition of water followed by evaporation of the added H2O molecules results in an enhancement of the number of hydrogen bonds of type N---HO=C inside the protein. It makes water molecules appear as catalysts to rebuild hydrogen bonds in the protein.  相似文献   

13.
We use multidimensional infrared spectroscopy of the OH stretch of HOD in D2O to measure the interconversion of different hydrogen bonding environments. The OH stretching frequency distinguishes hydrogen bonded (HB) and non-hydrogen-bonded (NHB) configurations by their absorption on the low (red) and high (blue) sides of the line shape. Measured asymmetries in the two dimensional infrared OH line shapes are manifestations of the fundamentally different spectral relaxations of HB and NHB. HB oscillators exhibit coherent oscillations within the hydrogen-bonded free energy well before undergoing activated barrier crossing, resulting in the exchange of hydrogen bonded partners. Conversely, NHB oscillators rapidly return to HB frequencies within 150 fs. These results support a picture where NHB configurations are only visited transiently during large fluctuations about a hydrogen bond or during the switching of hydrogen bonding partners. The results are not consistent with the presence of entropically stabilized dangling hydrogen bonds or a conceptual picture of water as a mixture of environments with varying hydrogen bond strength separated by barriers >kT.  相似文献   

14.
An exhaustive analysis of all H‐bond networks for finite elements of ice nanotubes formed by up to 32 water molecules (3,660,732 configurations in total) is performed. The results constitute a unique database and demonstrate the H‐bond network formation and changes with the growth of the ice nanotube. The statistical analysis shows that H‐bonds can be classified according to their structural positions, and there are remarkable dependencies of the cooperativity energy and bond lengths on the system's morphology. The study of low‐energy configurations supports the conclusion about the ferroelectric order in ice nanotubes with odd numbers of water molecules in the ring. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

15.
We have calculated the coherent x-ray scattering intensity of several phases of water under high pressure using the ab initio density functional theory (DFT). Our calculations span the molecular liquid, ice VII, and superionic solid phases, including the recently predicted symmetrically hydrogen bonded region. We compute simulated spectra for ice VII and superionic water. We provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We show that our modified atomic form factors allow for a nearly exact comparison with the total x-ray scattering intensities calculated from DFT. Finally, we analyze the effect of their new form factors have on the determination of the oxygen-oxygen radial distribution function from experiment.  相似文献   

16.
Conclusion The experimentally established correlation for crystals between the frequency of the OH (or OD) stretching vibrations and the interatomic separation RO·O can also be used for each hydrogen bond in the liquid phase taken in isolation, if the equilibrium length Re is used for RO·O. The empirical correlation between the low-frequency shift of the band and its broadening results from the exponentialv OH(Re) relationship, while the distribution function of the frequencies in the vibrational spectrum P() corresponds to the distribution of the energies of the hydrogen bonds P(E). When the deflection of the equilibrium configurations of the H bonds can be neglected, P() is expressed unambiguously through the distribution of the lengths of the hydrogen bonds P(Re) and makes it possible to determine their variance. Otherwise (the continuous network of strongly deflected H bonds in liquid water) the complex form of the spectral band and its temperature dependence can be described quantitatively by a simple equation of the Boltzmann type, in which the exponential part is the energy of the hydrogen bond (the depth of the potential well) making a contribution to the spectrum at the investigated frequency. The agreement between calculation and experiment reveals an important fact, i.e., the equality of the energies for the various configurations of the hydrogen bond producing one and the same frequencyv OH.Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences. Translated from Zhurnal Strukturnoi Khimii, Vol. 32, No. 6, pp. 72–80, November–December, 1991.  相似文献   

17.
Data have been summarized of several studies on the separation of isomeric pyrrolizidine alcohols by GLC using liquid polar stationary phases. It was shown that the order of emergence of isomers from the chromatographic column is determined to a significant extent by competition of intermolecular hydrogen bonds formed in the sorbate-sorbent systems and intramolecular hydrogen bonds in the molecules of the same pyrrolizidine alcohols. The preference for one or other type of hydrogen bond depends on the stereochemistry of the pyrrolizidine alcohols. Analysis of the geometric conditions for the formation of intramolecular hydrogen bonds in the investigated compounds in conjunction with chromatographic resolution data enables their configurations to be assigned. The anomalously short retention times of highly strained 5-hydroxyalkyl-3-methylpyrrolizidines are explained by the existence in them of a bicyclic conformation predominantly with a trans linkage and with f avora ble geometric conditions for forming intramolecular hydrogen bonds in them.  相似文献   

18.
In many enzyme-catalyzed biochemical pathways, a short, strong hydrogen bond between an enzyme and substrate is an important structural feature. These bonds are termed low-barrier hydrogen bonds. In this paper, we show that UV spectra can be used as an experimental technique to determine if a system contains a low-barrier hydrogen bond (LBHB). We simulate, using the time-dependent view of UV spectroscopy, several different UV spectra: absorption, photodissociation, and emission, on systems containing a low-barrier hydrogen bond. We find several distinguishing spectral features in these UV spectra for systems that possess a LBHB.  相似文献   

19.
Recent studies, based on X-ray absorption spectroscopy (XAS) and X-ray Raman scattering (XRS), have shown that the hydrogen bond network in liquid water consists mainly of water molecules with only two strong hydrogen bonds. Since this result is controversial, it is important to demonstrate the reliability of the experimental data, which is the purpose of this paper. Here we compare X-ray absorption spectra of liquid water recorded with five very different techniques sensitive to the local environment of the absorbing molecule. Overall, the spectra obtained with photon detection show a very close similarity and even the observable minor differences can be understood. The comparison demonstrates that XAS and XRS can indeed be applied reliably to study the local bonding of the water molecule and thus to reveal the hydrogen bond situation in bulk water.  相似文献   

20.
The Raman spectra of liquid water in the region of O-H stretching vibrations were obtained in the temperature range 298–359 K. The Raman spectra were decomposed into the components using the XPSPEAK-4.1 program, and their temperature dependence was evaluated. The number of bifurcate hydrogen bonds and the percentage of rotational conformers containing bifurcate bonds were shown to increase with temperature. The defect mechanism of the molecular mobility of water on the hydrogen bond network in the temperature range 298–359 K was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号