首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An ab initio molecular fragment study of formaldoxime is reported and compared with previous semiempirical and conventional ab initio studies.  相似文献   

2.
We combine femtosecond time-resolved rotational coherence spectroscopy with high-level ab initio theory to obtain accurate structural information for the nonpolar antiaromatic molecule 1,3,5,7-cyclooctatetraene (C8H8, COT) and its perdeuterated isotopomer COT-d8 (C8D8). We measure the rotational B0 and centrifugal distortion constants D(J), D(JK) of the v = 0 states of COT and COT-d8 to high accuracy, e.g. B0 (COT) = 2710.329(56) MHz, as well as B(v) for the v = 1 states nu6, nu11, nu17, nu22, and nu41/nu42 of COT. The experimental rotational constants are compared to those obtained from calculations at the coupled-cluster with single, double, and perturbative triples [CCSD(T)] level. The latter also take into account vibrational averaging effects of the ground and vibrationally excited states. Combining the experimental and calculated rotational constants with the calculated equilibrium bond lengths and angles allows us to determine accurate equilibrium structure parameters, e.g., r(e) (C-C) = 147.0 +/- 0.05 pm, r(e) (C=C) = 133.7 +/- 0.1 pm, and r(e) (C-H) = 107.9 +/- 0.1 pm. The equilibrium C-C and C=C bond lengths of COT are compared to those of 1,3-butadiene. The expected effect of decreased pi-electron delocalization due to the twisting of adjacent C=C double bonds in COT relative to butadiene is observed for the C-C bonds but not for the C=C bonds.  相似文献   

3.
We combine femtosecond time-resolved rotational coherence spectroscopy with high-level ab initio theory to obtain accurate structural information for the nonpolar molecules cyclohexane (C(6)H(12)) and cyclohexane-d(12) (C(6)D(12)). We measured the rotational B(0) and centrifugal distortion constants D(J), D(JK) of the v = 0 states of C(6)H(12) and C(6)D(12) to high accuracy, for example, B(0)(C(6)H(12)) = 4306.08(5) MHz, as well as B(v) for the vibrationally excited states ν(32), ν(6), ν(16) and ν(24) of C(6)H(12) and additionally ν(15) for C(6)D(12). To successfully reproduce the experimental RCS transient, the overtone and combination levels 2ν(32), 3ν(32), ν(32) + ν(6), and ν(32) + ν(16) had to be included in the RCS model calculations. The experimental rotational constants are compared to those obtained at the second-order M?ller-Plesset (MP2) level. Combining the experimental and calculated rotational constants with the calculated equilibrium bond lengths and angles allows determination of accurate semiexperimental equilibrium structure parameters, for example, r(e)(C-C) = 1.526 ± 0.001 ?, r(e)(C-H(axial)) = 1.098 ± 0.001 ?, and r(e)(C-H(equatorial)) = 1.093 ± 0.001 ?. The equilibrium C-C bond length of C(6)H(12) is only 0.004 ? longer than that of ethane. The effect of ring strain due to the unfavorable gauche interactions is mainly manifested as small deviations from the C-C-C, C-C-H(axial), and C-C-H(equatorial) angles from the tetrahedral value.  相似文献   

4.
High-level ab initio electronic structure calculations are used to interpret the fragmentation dynamics of CHBr(2)COCF(3), following excitation with an intense ultrafast laser pulse. The potential energy surfaces of the ground and excited cationic states along the dissociative C-CF(3) bond have been calculated using multireference second order perturbation theory methods. The calculations confirm the existence of a charge transfer resonance during the evolution of a dissociative wave packet on the ground state potential energy surface of the molecular cation and yield a detailed picture of the dissociation dynamics observed in earlier work. Comparisons of the ionic spectrum for two similar molecules support a general picture in which molecules are influenced by dynamic resonances in the cation during dissociation.  相似文献   

5.
An improved substitution structure for glyoxylic acid in the hydrogen bonded trans-1 form is presented. By means of microwave double resonance spectroscopy, the trans-2 form, with a zig-zag chain of atoms HOCCH, was identified. Using trans-2 dipole moment components calculated by ab initio SCF theory, the energy of the trans-2 form is found to be 1.2 ± 0.5 kcal mole?1 higher than that of the trans-1 form. The ab initio energy difference (?1.0 kcal mole?1) has the wrong sign.  相似文献   

6.
A remeasurement of the rotational spectra of the normal and hydroxyl deuterated isotopomers of cyclopropyl carbinol (cyclopropane methanol, (CH2)2CH(CH2OH)) using Fourier-transform microwave spectroscopy has provided refined rotational constants and centrifugal distortion constants for this molecule. Rotational constants for an additional four singly substituted 13C isotopomers, the OD isotopomer, and the 18O isotopomer are consistent with a conformer in which the OH group forms an intramolecular hydrogen bond with the edge of the cyclopropyl ring. The observed a-type transition frequencies for the normal and deuterated species are in reasonable agreement with a previous microwave study (although some frequencies differ by several hundred kilohertz), but the few b- and c-type lines that were measured in the range of our spectrometer were found to differ by several megahertz from the previous literature measurements, leading to A rotational constants that differ significantly from those reported previously. The refined rotational constants for the normal isotopic species are A=12470.7795(23) MHz, B=3236.4678(7) MHz, C=2894.4831(7) MHz, while those of the deuterated species are A=12069.2653(24) MHz, B=3177.1540(8) MHz and C=2826.2658(7) MHz. Results of ab initio optimizations on seven conformers for this molecule carried out at the MP2/6-311+G(d,p) level will be compared with the experimentally determined structural parameters.  相似文献   

7.
Protonated methanol, CH3 OH2+, has been studied using the LCAO—MO—SCF method with a 7, 3 and 9, 5, 1 Gaussian orbital basis set on the heavy atoms and 4s on hydrogen. It is found that the ground state is non-planar around oxygen, in contrast with previous calculations, with an inversion barrier of 3 kcal mol?1. The changes in electron distribution in the reacting systemCH3+ + H2O → CF3OH2+is also examined.  相似文献   

8.
The molecular design of several synthetic artificial enzymes, which mimic the action of the serine protease-chymotrypsin, incorporates the phenylimidazole molecular fragment to play the role of the His-57 residue in the native enzyme active site. Study of these artificial enzymes by molecular modeling techniques requires accurate torsional force field parameters for the phenylimidazole interring bond. This, in turn, requires accurate characterization of the barrier to rotation around this bond. Previous semiempirical calculations of this rotational barrier have neglected geometry optimization of the molecule at the points along the rotational pathway. The 4-phenylimidazole rotational barrier (5.6 kcal mol–1] presented here was obtained by full ab initio geometry optimization at the 3–21G level at each of the points along the rotational pathway.  相似文献   

9.
10.
The FT-Raman spectra (2000-30 cm−1) of liquid and solid nitryl chloride, ClNO2, along with the infrared spectra (2000-80 cm−1) of the gas and solid have been recorded. All six fundamentals are confidently identified and the potential energy distributions determined from the force fields obtained from ab initio calculations. Several different basis sets have been utilized to determine the harmonic frequencies and force constants which are compared to the previously reported valence force constants. Structural parameters have been calculated with these basis sets including electron correlation with MP2, MP3 and MP4 perturbation. The calculated equilibrium structural parameters are compared to the experimental r0 structural parameters. The spectra of the solid indicate that there are at least two molecules per primitive cell. All of these results are compared to the corresponding quantities for some similar molecules.  相似文献   

11.
The potential energy surfaces of dissociation and elimination reactions for CH(3)COCl in the ground (S0) and first excited singlet (S1) states have been mapped with the different ab inito calculations. Mechanistic photodissociation of CH(3)COCl has been characterized through the intrinsic reaction coordinate and ab initio molecular dynamics calculations. The alpha-C-C bond cleavage along the S1 pathway leads to the fragments of COCl((2)A' ') and CH(3) ((2)A') in an excited electronic state and a high barrier exists on the pathway. This channel is inaccessible in energy upon photoexcitation of the CH(3)COCl molecules at 236 nm. The S1 alpha-C-Cl bond cleavage yields the Cl((2)P) and CH(3)CO(X(2)A') fragments in the ground state and there is very small or no barrier on the pathway. The S1 alpha-C-Cl bond cleavage proceeds in a time scale of picosecond in the gas phase, followed by CH(3)CO decomposition to CH(3) and CO. The barrier to the C-Cl bond cleavage on the S1 surface is significantly increased by effects of the argon matrix. The S1 alpha-C-Cl bond cleavage in the argon matrix becomes inaccessible in energy upon photoexcitation of CH(3)COCl at 266 nm. In this case, the excited CH(3)COCl(S1) molecules cannot undergo the C-Cl bond cleavage in a short period. The internal conversion from S1 to S0 becomes the dominant process for the CH(3)COCl(S1) molecules in the condensed phase. As a result, the direct HCl elimination in the ground state becomes the exclusive channel upon 266 nm photodissociation of CH(3)COCl in the argon matrix at 11 K.  相似文献   

12.
The effect of hydration on the electronic structure of H(2)O(2) is investigated by liquid-jet photoelectron spectroscopy measurements and ab initio calculations. Experimental valence electron binding energies of the H(2)O(2) orbitals in water are, on average, 1.9 eV red-shifted with respect to the gas-phase molecule. A smaller width of the first peak was observed in the photoelectron spectrum from the solution. Our experiment is complemented by simulated photoelectron spectra, calculated at the ab initio level of theory (with EOM-IP-CCSD and DFT methods), and using path-integral sampling of the ground-state density. The observed shift in ionization energy upon solvation is attributed to a combination of nonspecific electrostatic effects (long-range polarization) and of the specific interactions between H(2)O(2) and H(2)O molecules in the first solvation shell. Changes in peak widths are found to result from merging of the two lowest ionized states of H(2)O(2) in water due to conformational changes upon solvation. Hydration effects on H(2)O(2) are stronger than on the H(2)O molecule. In addition to valence spectra, we report oxygen 1s core-level photoelectron spectra from H(2)O(2)(aq), and observed energies and spectral intensities are discussed qualitatively.  相似文献   

13.
Ab initio calculations on the structure and geometry of the three isomers of N2H2 (trans-diimide, cis-diimide, and 1,1-dihydrodiazine) were performed both on HF and CI level using gaussian basis sets with polarization functions. The trans and cis isomers have singlet ground states; the trans isomer is found to be lower in energy than the cis isomer by 6.9 kcal/mol (HF) and 5.8 kcal/mol (CI), respectively. The barrier for the trans-cis isomerization is predicted to be 56 (HF) and 55 (CI) kcal/mol. H2 N=N has a triplet ground state with a non-planar equilibrium geometry and a rather long NN bond of 1.34 Å. Its lowest singlet state, however, is planar with an NN double bond of 1.22 Å; it is found to lie about 3 kcal/mol above the triplet and 26 kcal/mol above the singlet ground state of trans-diimide.  相似文献   

14.
He(I) and He(II) photoelectron spectra are reported for the cycl[3,3,3]azine (1), cycl[3,2,2]azine (2), indolizine (6) and imidazo[1,2-a] pyridine (7), as well as He(I) spectra for related compounds (3–5). Ab initio molecular orbital calculations have been used to assign the spectra of 1, 2, 3, 6 and 7, and to give information about the nature of the π-electron energy levels. The first IP for 1 is singularly low (5.86 eV), and this has been interpreted in terms of occupancy of the 1a1'' orbital which is normally vacant in related compounds. In the cyclazines, the nitrogen lone pair seems to be split into two π-levels.  相似文献   

15.
HeI photoelectron spectroscopy and ab initio calculations have been applied to the azoles, providing sets of energy levels that correlate well with each other in the upper valence shell region. Observed IPs are assigned to the three π- and to the five o-levels that involve (principally) valence shell p orbitals. The observed vibration structure is not particularly informative as an aid to assignment since both π-and σ-levels give some bands with vibration structure. The calculations provide in addition to eigenvalues (energy levels) a set of eigenvectors, permitting analysis of the bonding characteristics of the levels, and trends apparent within the series.  相似文献   

16.
MAO is the co-catalyst in metallocene catalytic systems, which are widely used in single-site olefin polymerization due to their high stereoselectivity. To date, the structures of the catalytically active compound or compounds in MAO have eluded researchers. Although many structural models have been proposed, none are generally accepted. In this study, aspects of the formation mechanism of MAO are addressed. Molecular dynamics simulations at the MP2 level of theory were carried out for presumed elementary steps in MAO formation via hydrolysis of trimethylaluminum (TMA). Methane production was observed, in agreement with experiment, as well as intermediate species that are consistent with the known structural features of MAO and similar to isolated and structurally characterized aluminoxanes. A (CH3)3Al-OH2 species, which we denote as TMA-OH2, containing a stable Al-O single bond emerged as the building block molecule. From this species, a hexameric cage was formed and activation barriers for the various reactions were calculated. Three distinct channels were identified for growth beyond the hexameric cage. It was concluded that MAO formation is a step polymerization through a bifunctional monomer, with [(CH3)Al-O] as the structural unit and a kinetic model was proposed. The structures that emerged were in agreement with the crystallographic evidence for aluminoxanes and support the experimental data regarding the MAO chemical composition.  相似文献   

17.
Features of the structure of thiophene and 2-chlorothiophene molecules have been analyzed from the results of ab initio calculations using the RHF/6-31G* method.Institute for Technical Chemistry, Ural Department, Russian Academy of Sciences, Perm 614000, Russia; email: cheminst@mail.psu.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 40–43, January, 1999.  相似文献   

18.
We present several variants of methods for the automatic search of optimum geometries of solutes via ab initio SCF procedures. The physical meaning of geometry optimization in solution is discussed. Advantages and disadvantages of the different variants are shown making use of calculations on the HF dimer with different basis sets, supplemented by information on the computational times. Suggestions for the most convenient strategies (which in part depend on the nature of the solute) are also done.  相似文献   

19.
The molecular structure of fluoromalononitrile was studied by means of gas-phase electron diffraction and quantum mechanical methods using HF/6-31G(d), MP2/6-311++G(2df,2pd) and DFT/B3LYP/6-31G(d), B3PW91/6-31G(d), B3LYP/6-311++G(2df,2pd) and B3PW91/6-311++G(2df,2pd). The r(g) and angle(alpha) structural parameters we obtained from the present analysis are: CC=1.487(5) A, CN=1.157(3) A, CF=1.386(5) A, CH=1.096 A (ass.), angleCCC=106.7(1.0) degrees , angleCCF=108.0(0.7) degrees , angleCCN=177.6(2.0) degrees . Uncertainties in parenthesis are 3sigma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号